"Achieving Outcomes by Building Capability"

The AgriBusiness Group_™

Nutrient Performance and Financial Analysis of Horticultural Systems in the Horizons Region

Prepared for: Horticulture NZ Prepared by: The AgriBusiness Group June 2014

Contents Nutrient Performance and Financial Analysis of Horticultural Systems in Horizons Region

<u>1</u> <u>EXE</u>	CUTIVE SUMMARY	3
<u>2</u> <u>BAC</u>	CKGROUND	6
2.1 PU	RPOSE	6
2.2 Me	ETHODOLOGY	6
2.3 BA	CKGROUND ON N LEACHING IN HORTICULTURE	8
<u>3 NUT</u>	RIENT PERFORMANCE	9
3.1 OV	ERSEER MODELLING	9
3.2 Re	SULTS	12
3.2.1 R	COTATION 1 CASH CROPPING	
3.2.2 R	COTATION 2 INTENSIVE VEGETABLE / MIXED AR.	ABLE 13
3.2.3 R	COTATION 3 MARKET GARDEN	
3.2.4 R	COTATION WAIMARIO	
	ANCIAL ANALYSIS	ERROR! BOOKMARK NOT DEFINED. Error! Bookmark not defined.
	SULTS	17
	DIX ONE: AVERAGE ESTIMATED REDUC	
APPLIE	ZD N.	18
APPENI	DIX TWO : CHALLENGES RELATED TO 1	MODELLING HORTICULTURAL CROPS
OVERS	EER 6.1	18
APPENI	DIX THREE: GROSS MARGINS	21
A PPFNI	DIX FOUR: CORE ASSUMPTIONS MADE	IN MODELLING IN 24
APPENI	DIX FIVE: RESULTS OF PRACTICE QUES	STIONS IN THE SURVEY. 26

<u>Cover photo:</u> Participants in a Nutrient Management Field Trip To Horowhenua growing operations managed by Kapiti Green Ltd, June 2014

Please Read

The information in this report is accurate to the best of the knowledge and belief of the consultants acting on behalf of the Horticulture NZ. While the consultant has exercised all reasonable skill and care in the preparation of information in this report neither the consultant nor the Horticulture NZ accept any liability in contract, tort or otherwise for any loss, damage, injury or expense, whether direct, indirect or consequential, arising out of the provision of information in this report.

1 Executive Summary

This report was commissioned by Horticulture NZ (HortNZ) because it was felt that there is a need to further develop our knowledge of the Nutrient Performance and the financial impact of adopting mitigation techniques in order to minimise the impact of leaching of nutrients for Horticultural growers operating within the Horizons Region.

The objective of the study was to collect primary physical, financial and environmental data from growers in the Horizons Region to provide representative models of vegetable systems and to analyse the impact of mitigation practices on the environmental and economic performance of the farms.

HortNZ is working to extend knowledge on good management practice to growers, to develop a better understanding of the practical tools for nutrient management, and the cost of choices that growers have around mitigation practices. The work will also inform a broader New Zealand wide HortNZ Nutrient Management Programme which aims to identify and codify good management practices for nutrient management.

Methodology

The methodology used in gathering the base data for this work was based on the provision of survey information gained from interviewing 19 growers of horticultural crops within the Horizons Region. Base models of the vegetable grower systems and mitigation options to be modelled were created from information gained from the surveys. Gross Margins were created from a range of sources including data gained from the survey and a similar survey carried out in the Pukekohe Region.

Rotations Modelled

Four representative rotations were modelled;

Rotation 1 – Cash Cropping

Horticultural cropping is secondary to the primary purpose which is grazing of the land. Cropping is a relatively short term operation and is often for specialist crops like seed potatoes.

> Rotation 2 – Intensive Vegetable/ Mixed Arable

These properties are generally of a greater scale than Market Garden. They generally have several years of a break crop such as pasture in the rotation. They use advanced farming systems to achieve the scale of production. They have a broad mix of crops.

Rotation 3 – Market Garden

These farms represent the historic Pearl River (Guangdong) intensive market garden systems which have many crops in the same field with up to three crops a year in a continuous rotation.

Rotation 4 – Waimarino

This model represents owned and leased land farmed over a typical 12 - 14 year rotation. Typical rotation includes pasture (and cereals in some cases) 8-10 years followed by a mix of vegetable crops.

Mitigation Techniques Modelled.

Five mitigation techniques were originally identified as worthy of modelling.

> Mitigation 1 – Limiting N application.

This mitigation technique limited any one application of N to 80 kg N / ha per month.

Mitigation 2 – Altering the amount of N and the yield.

This mitigation option altered the amount of N applied to the crop in 10% deductions from 0 to a 30% reduction in the amount of N applied. The amounts of yield reductions modelled were created by reference to some research reports and grower experience.

> Mitigation 3 – The use of cover crops.

For this exercise when the gap between crops was more than two months then a cover crop was put in.

> Mitigation 4 – Active Water Management

This mitigation option was initially chosen to test the impact of altering the irrigation practices. On examination of the responses to the questions on irrigation practices in the survey it was obvious that very few growers irrigated at all, when they did they irrigated in response to soil moisture deficits and applied very low volumes at any one irrigation. Therefore it was not possible to model this mitigation technique.

> Mitigation 5 – Altered Tillage Practices

To test the theoretical impact of reducing the amount of tillage practiced wherever possible the choice of "minimum tillage" was chosen as opposed to the choice of "conventional tillage".

Summary of Findings

Table 1: Whole Farm N leaching results (kg N / ha / annum)

	Status Quo	M 1		M2 20%	M2 30%	M 3	M 5
Rotation 1	15	14	15	14	14	14	15
Rotation 2	26	24	25	24	22	26	25
Rotation 3	39	39	37	35	31	36	35
Rotation 4	17	16	17	16	16	16	16

Summary of the N leaching results:

- The inclusion of relatively long periods of pasture in the rotations has a big impact on the whole farm results for Rotation 1 and Rotation 2.
- The ability to be able to specify the cultivated area has reduced the whole farm N leaching result significantly for the more intensive rotations 2 and 3.
- Limiting the amount of Nitrogen applied in any one application has very little effect on the total amount of N leached.
- Reducing the amount of N applied in 10% steps had a significant effect on the more intensive rotations 2 and 3 but very little impact on the more extensive rotations 1 and 4.
- > The use of cover crops had its most significant impact on rotation 3 market gardening.
- > Altered tillage practices had virtually no effect on any of the rotations.

Financial Impacts

	Status Quo	M 1	M2 10%	M2 20%	M2 30%	M 3	M 5
Rotation 1	1,555	1,545	1,342	1,117	838	1,477	1,555
Rotation 2	10,588	10,108	6,574	3,213	819	10,043	10,588
Rotation 3	16,943	16,843	10,758	5,409	1,566	16,943	16,943
Rotation 4	2,662	2,637	1,977	1,169	677	2,273	2,662

Table 2: Whole Farm Financial results (Average Gross Margin return \$ / ha)

Summary of Financial Results

- Mitigation 1 has virtually no effect on the Gross Margin return for any of the rotations modelled.
- Mitigation 2 has an increasing effect as the proportion of N applied is reduced. At 30% reduction in N applied, the gross margin result is virtually break even.
- > Mitigation 3 and 5 have virtually no impact on the Gross Margin results.

2 Background

This report was commissioned by Horticulture NZ (HortNZ) because it was felt that there is a need to further develop our knowledge of the Nutrient Performance and the financial impact of adopting mitigation techniques in order to minimise the impact of leaching of nutrients for Horticultural growers operating within the Horizons Region.

2.1 Purpose

The objective of the study was to collect primary physical, financial and environmental data from growers in the Horizons Region to provide representative models of vegetable systems and to analyse the impact of mitigation practices on the environmental and economic performance of the farms.

HortNZ is working to extend knowledge on good management practice to growers, to develop a better understanding of the practical tools for nutrient management, and the cost of choices that growers have around mitigation practices. The work will also inform a broader New Zealand wide HortNZ Nutrient Management Programme which aims to identify and codify good management practices for nutrient management.

2.2 Methodology

2.2.1 Survey

The methodology used in gathering the base data for this work was based on the provision of survey information gained from interviewing 19 growers of horticultural crops within the Horizons Region.

The survey was designed to collect both physical inputs required to carry out the required modelling, physical outputs in terms of the yields achieved, financial performance of growing the individual crops and also included a range of questions about growing practice parameters which were of interest to HortNZ.

A letter was sent out to a representative sample of growers informing them of the purpose of the survey information and informing them that they would be contacted to take part. Nineteen of the proposed twenty three were completed. The quality and completeness of the information gathered varied, but provided a basis of information which was built upon through the experience of the modellers. This experience was gained from carrying out the same survey in the Pukekohe District.

The information collected in the surveys is summarised in Appendix 5. The summaries indicate the mitigation practices currently undertaken by the growers in the area and HortNZ will use the information in identifying good management practices for nutrient management.

Base models of the vegetable grower systems and mitigation options to be modelled were created from information gained from the surveys. Gross Margins were created from a range of sources including data gained from the survey and a similar survey carried out in the Pukekohe Region.

2.2.2 OVERSEER Modelling

The modelling of the nutrient performance of the four farm systems was carried out using the OVERSEER 6.1 model. The use of OVERSEER as a means of accurately depicting the performance of Horticultural systems has some challenges that are noted in Appendix 1. One of the key challenges is that range of crops available to model is limited. Therefore the rotations presented in this report are not exact depictions of actual cropping rotations in the Horizons Region. A crop with very similar crop management was substituted where it was necessary to replace a crop.

As highlighted by the FAR (2013) review, the accuracy of the OVERSEER 6.1 model has not been tested against actual N leaching results for Horticultural properties. So the results presented here should be regarded as appropriate for use at this point of time but could change as further research information becomes available and is able to better inform the model.

An alternative model (APSIM) is available and it may be able to better model the performance of N leaching and P output in Horticulture. APSIM is primarily a research tool that is under commercial licence to Plant and Food in New Zealand, as opposed to the Overseer model which is freely available to the public.

2.2.3 Financial Models

The financial models were created based on the standard methodology for Gross Margin analysis. Gross revenue is created with the total yield for the crop multiplied by the price received. From this the Total Variable Revenue is deducted which is all of the expenditure items which are used to grow the crop but excluding items which are related to land ownership. The resultant figure (Revenue minus Expenditure) is the Gross Margin return from growing that crop.

Most of the Gross Margins used in this study are based on the data gained from the survey information. Where there were a number of Gross Margins available from the survey data for any one crop these were combined to create a standard Gross Margin for that crop. Where there was little or no data available from the survey the Gross Margin for that crop was created from previous financial work carried out on Horticulture in the Horizons Region or was taken from the Pukekohe data. A Gross Margin for the pastoral sector was created with reference to the Ministry for Primary Industries Farm Monitoring model Western Lower North Island Intensive Sheep and Beef.

A model was created which included all of the crops grown in each farm system which was then totalled and divided by the number of years that crops were grown end to give the average annual Gross Margin return for that farming system. These models are included in Appendix 3.

2.3 Backgroundon N leaching in Horticulture

It is recognised that there are a number of issues related to horticulture production which result in high N leaching and relative inefficiency of N use compared to other pastoral land uses. However, many horticulture growers have continued to refine their use of N inputs, which has resulted in reduced use of N and therefore the total amount of N leaching over time.

The following quote on the nature and impact of horticultural land use on the rate of N leaching is taken from a report prepared for Environment Bay of Plenty¹ and explains the relative inefficiency of the use of N in horticultural systems. It is concluded that the major source of N leaching is derived from fertiliser and crop residue and that fertiliser N management strategies are key when devising mitigation strategies. The analysis of mitigation techniques in this report concentrates on the two strategies of timing and volume of N application.

The main factors responsible for nitrate leaching in these systems are: high N use (fertiliser and manure), frequent cultivation, relatively short periods of plant growth, low nutrient use efficiency by many vegetable crops, and crop residues remaining after harvest (Di and Cameron, 2002a).

Compared to other agricultural systems, market gardens are the most intensively fertilised and cultivated production systems - hence their propensity to leach N. N application rates used in vegetable crops can be as high as 600 kg N ha-1 yr-1 (Wood, 1997). Large application rates are used to ensure maximum growth because vegetable crops have sparse root systems that are inefficient at recovering applied fertiliser. Also, vegetables typically have short growing periods and are also grown over winter when plant growth and N uptake is slow (Haynes and Francis, 1996; Haynes, 1997). Therefore, the recovery of applied N by vegetable crops is often less than 50%, and can be as low as 20% (Di and Cameron, 2002a). Consequently, a large quantity of fertiliser N remains in the soil surface layers and is susceptible to leaching during rainfall or irrigation. Additionally, following crop harvest large amounts of plant residues are usually incorporated into the soil which, following decomposition, release mineral N into soil. The amount of mineral N derived from fertiliser and crop residue that is present in the soil after harvest can be as high as 200-300 kg N ha-1, and is the major source of leached N, indicating that fertiliser N management strategies are the key to nitrate leaching intervention in these systems.

The issues which cause N leaching in vegetable growing operations therefore are:

- High use of applied N as a result of sparse root systems for the crops (particularly when they are immature).
- Poor N use efficiency.
- Short growth periods and therefore (in some cases) multiple crops in one year.
- > Grown over winter when leaching rates are high due to high rainfall and saturated soils.
- > Large amounts of crop residue left in the paddock after harvest which is worked into the soil.

¹ Meneer J C, Ledgard S F, Gillingham A G: Land use impacts on nitrogen and phosphorous loss and management options for intervention.

Nutrient Performance and Financial Analysis of Horticultural Systems in the Horizons Region

3 Nutrient Performance

3.1 OVERSEER Modelling

3.1.1 Defining the core models.

The definitions and scopes of the four core models were developed in a workshop with Horizons growers. Each model was set up with the parameters (as expressed in Appendix 4) set to be standard with all of the key parameters like Soil Type (Manawatu Silt Loam) and the climatic variables being a reflection of those experienced in the growing area.

The makeup of the actual rotation of the crops was taken from the data collected in the survey.

Rotation 1 – Cash Cropping

Horticultural cropping is secondary to the primary purpose which is grazing of the land. Cropping is a relatively short term operation and is often for specialist crops like seed potatoes. Once the land is worked up for the crop it is then taken for a cereal crop and regrassed back into pasture. The rotation used is as follows:

Pasture (8 years) > Potatoes > Barley > Pasture

Rotation 2 – Intensive Vegetable/ Mixed Arable

These properties are generally of a greater scale than Market Garden. They generally have several years of a break crop such as pasture in the rotation. They use advanced farming systems to achieve the scale of production. They have a broad mix of crops including brassicas, curcurbits, potatoes, onions, melons which are often rotated over many blocks of leased land. They are generally intensively managed through cover crops like oats / mustard / perennial grasses.

Pasture (2 years) > Cabbage > Lettuce > Spinach > Squash > Onions > Pasture

Rotation 3 – Market Garden

These farms represent the historic Pearl River (Guangdong) intensive market garden systems which have many crops in the same field with up to three crops a year in a continuous rotation.

Broccoli > Spinach > Lettuce > Cabbage > Cauliflower > Cabbage

Rotation 4 – Waimarino

This model represents owned and leased land farmed over a typical 12 – 14 year rotation. Typical rotation includes pasture (and cereals in some cases) 8-10 years followed by a mix of potatoes/brussels sprouts/parsnips/carrots. Potatoes, Brussels Sprouts are irrigated on average 1 out of every 3 years.

Pasture (8 years) > Potato > Carrots > Brussel Sprouts

The individual crop parameters such as planting date, fertiliser type and rate, fertiliser timing, harvest date and yield were all set as shown in appendix four.

3.1.2 Choice of Area Cropped

The choice of the area that is cropped has a significant influence on the amount of N leaching which OVERSEER calculates over the total area of the farm. For each crop choice there are three choices of what can be done with the land In OVERSEER. The "cultivated area" is the area of land on which the calculation of the impact of the farming activity is calculated. "Headlands and Tracks" are areas that are cultivated but there is no crop grown on them and "Other areas" are defined as areas where the land is not cultivated.

The issue with horticultural land use is that there are often significant areas within a paddock where the crop is not grown. This is mainly taken up with the beds that are formed to grow the crops in which have a significant area taken up with the areas where tractors, sprayers and harvesters run over the paddock. The headlands and track area are also quite significant areas because of the need to turn quite large machinery. The adoption of technology to spread fertiliser which utilises banding and side application also means that a significant portion of the area also doesn't have fertiliser applied to it.

Therefore in this modelling exercise we have adopted a policy that for all cropping land uses there is 80% of the total area taken up with the cultivated area, 10% is taken up by headlands and tracks and 10% is taken up by other areas. The exception to this is for Rotation 3 Market Garden which in order to demonstrate the impact of unused area on the total impact of the property we have adopted 70% of the area taken as cultivated area , 20% is taken up by headlands and tracks and 10% is taken up by other areas.

This is why we see that the results expressed for the whole farm N leaching figure is less than any of the individual cropping figures.

3.1.3 Mitigation Techniques Modelled

Background research suggests that the mitigation options available to vegetable growers are based around improving nutrient use efficiency. These include:

- Nutrient management planning,
- > Proper fertiliser material selection,
- > Better application timing and placement,
- Improved irrigation scheduling.

The use of slow release fertilisers and the use of DDE's which act as a retardant to N leaching are both potential mitigation techniques that should be considered. The issue with slow release fertilisers is that there are certain times when vegetable crops have very high demand on N and therefore slow release fertilisers would not be able to adequately meet the crops requirement. Also, it is not possible to model the types of slow release fertilisers that are available at present in OVERSEER. Our analysis of the current mitigation practices of growers in the Horizons Region was that they are carrying out nutrient management planning, fertiliser material selection and better timing and placement of N application. However, they are limited by the type of system which they could use in terms of improved irrigation scheduling.

Having modelled the Status Quo option which modelled what they were doing now, it became obvious that the major impacts on N Leaching was related to the amount and timing of application of N. Therefore, the following mitigation techniques were trialled:

Mitigation 1 – Limiting N application.

This mitigation technique limited any one application of N to 80 kg N / ha per month. This mainly entailed the splitting of the first application of N by either moving some of it forward into the pre planting cultivation phase and incorporating it into the soil or by evening out the amount of N in subsequent fertiliser applications up to the maximum of 80 kg N / ha. No impact on yield was modelled from this mitigation technique it was assumed that the evening out of the N applications did not have a negative impact on the yield of the crop. This was partly driven by the relatively regular N applications that are made in horticultural crops and the fact that in OVERSEER the smallest window of applications are on a monthly basis. Current best practice is for the application of N to be more regular than once per month, particularly in the early growing stages when the plants are relatively small and growing rapidly and have a high requirement for N.

There is also the requirement to get the application of N on relatively early in the growth phase of many of the crops because experience shows that later application of N can lead to reduced yield and a deterioration of quality of many of the crops as a result of being pushed along later in their maturity.

Mitigation 2 – Altering the amount of N and the yield.

This mitigation option altered the amount of N applied to the crop in 10% deductions from 0 to a 30% reduction in the amount of N applied. The amounts of yield reductions modelled were created by reference to some research reports² on the impact of N on yield and informed by the experienced opinion of some of the growers in the Pukekohe District. The assumptions as to average yield reduction by individual crop are attached in Appendix 1. Many of the research reports referenced refer to trials which occurred from the mid 1960's to the late 1980's. In that time period the amount of N used was much higher than what is used now. Although very little research has been carried out recently into N use on horticultural crops, many of the growers have continued to develop their knowledge on the timing and volume of N application to be able to maximise crop growth and to try and improve N use efficiency and at the same time reduce costs. This has resulted in much lower rates of N usage than those quoted in the old research reports.

Wood (1998): Effect on crop yields from reduced N inputs to selected winter vegetable crops.

Wood (1997): Reduced N inputs to winter vegetable crops – Pukekohe district 1997.

Thomas, Obreza, Sartain : Improving N and P fertiliser use efficiency for Floridas horticultural crops. MAF (1979): Celery production in Hutt Horowhenua.

² Pearson, Renquist, Reid (1999): MAF vegetable fertiliser trails – A re appraisal using a new model.

Sher (1997): Nutrient uptake of vegetable crops. Summary of results 1993 – 1996.

Nutrient Performance and Financial Analysis of Horticultural Systems in the Horizons Region

Mitigation 3 – The use of cover crops.

The use of cover crops is a good mitigation technique to reduce the amount of Nitrogen which leaks through the soil profile, particularly during the winter months when there is high rainfall and the soil is generally saturated, therefore there is a lot of movement through the soil profile. For this exercise when the gap between crops was more than two months then a cover crop was put in. At the end of the cover crop it was worked into the soil profile.

Mitigation 4 – Active Water Management

This mitigation option was initially chosen to test the impact of altering the irrigation practices. It involves setting the option in OVERSEER from defining the actual amount of irrigation water applied to choosing the option to "actively manage" the application of irrigation water. In this way the model chooses to apply only the amount of water which is required by the crop and therefore limits the amount of excessive water running out the bottom of the soil profile or runoff from the top of the soil profile.

On examination of the responses to the questions on irrigation practices in the survey it was obvious that very few growers irrigated at all, when they did they irrigated in response to soil moisture deficits and applied very low volumes at any one irrigation (10mm / application). Therefore choosing the "actively manage" irrigation option was choosing the way that those who did irrigate were already applying the water. Therefore modelling this option in OVERSEER was not continued with.

Mitigation 5 – Altered Tillage Practices

The amount of tillage applied to the soil releases an increasing amount of nitrogen as the amount of tillage increases. In horticultural operations there is a high degree of tillage required to get the soil into a sufficient state to plant some horticultural crops and to be able to form the beds which many of the crops are required to be grown on. To test the theoretical impact of reducing the amount of tillage practiced wherever possible the choice of "minimum tillage" was chosen as opposed to the choice of "conventional tillage" in order to test the impact of this option.

3.2 Results

The results of the OVERSEER modelling are displayed with the whole farm (average) results first (highlighted) and then the results for each of the crops that were modelled going down the rows. Across the columns the results are shown for the status quo option first and then for each of the mitigation options.

3.2.1 Rotation 1 Cash Cropping

Table 3: N leaching results for Rotation 1 (kg N / ha / annum)

	Status Quo	M 1		M2 20%	M2 30%	М 3	M 5
Whole Farm	15	14	15	14	14	14	15

Nutrient Performance and Financial Analysis of Horticultural Systems in the Horizons Region

Pastoral	8	8	8	8	8	8	8
Potato	56	58	56	55	53	56	56
Barley	117	95	98	93	90	93	117

Status Quo Results

The whole farm N leaching result is for 15 kg N leached / ha from this rotation. There is however quite a variation with the pastoral years being quite low at 8 kg N leached / ha but the two cropping options being quite high at 56 kg N leached for the potato crop and 117 kg N leached for the Barley crop. The fact that the horticultural regime being a relatively small proportion of the total land use for the property means that the impact of this on average on the farm is minimal.

Mitigation 1 Result

The option to limit the application of any one application of N to 80 kg / ha has the impact of lifting the total N leaching for the potato crop but quite a significant reduction in the barley crop. Overall there is very little impact on the total farm leaching result.

Mitigation 2 Result

The results of limiting the amount of N applied by a 10% reduction through to 30% has a quite significant impact on the N leaching results for the two crops grow in this model but overall there is very little impact on the whole farm result.

Mitigation 3 Result

The use of a cover crop between the two crops has had quite a significant reduction in the total N leached for the Barley crop but very little impact on the whole farm result.

Mitigation 5 Result

The use of minimum tillage techniques has had no impact on the amount of N leached.

3.2.2 Rotation 2 Intensive Vegetable / Mixed Arable

Table 4: N leaching results for Rotation 1 (kg N / ha / annum)

	Status Quo	M 1		M2 20%	M2 30%	М 3	M 5
Whole Farm	26	24	25	24	22	26	25

Nutrient Performance and Financial Analysis of Horticultural Systems in the Horizons Region

Pastoral	8	8	8	8	8	8	8
Year 1	43	36	43	43	40	43	43
Year 2	55	55	52	48	44	55	55
Year 3	20	20	19	18	18	20	19

Status Quo Results

The whole farm N leaching result is for 26 kg N leached / ha from this rotation. There is however quite a variation with the pastoral years being quite low at 8 kg N leached / ha but the cropping options being substantially higher varying between 20 and 55 kg N. The fact that the pastoral part of the rotation takes up 2 of the 5 years means that the whole farm N leaching is still relatively low.

Mitigation 1 Result

The option to limit the application of any one application of N to 80 kg / ha has the impact of substantially reducing the N leaching from the first year but no impact on the subsequent years. Overall there is little impact on the total farm leaching result.

Mitigation 2 Result

The results of limiting the amount of N applied by a 10% reduction through to 30% has a varying impact across the years but has the greatest impact on Year 2 with a significant reduction at the 30% reduction in N application.

Mitigation 3 Result.

The use of a cover crop has had no impact on the whole farm result.

Mitigation 5 Result

The use of minimum tillage techniques has a slight impact on the amount of N leached.

3.2.3 Rotation 3 Market Garden

Table 5: N leaching results for Rotation 1 (kg N / ha / annum)

	Status Quo	M 1	M2 10%	M2 20%	M2 30%	M 3	M 5
Whole Farm	39	39	37	35	31	36	35
Year 1	43	53	40	39	33	43	38
Year 2	46	46	42	38	33	46	44
Year 3	65	57	65	64	58	54	58

Status Quo Results

The whole farm N leaching result is for 39 kg N leached / ha from this rotation. Please note the fact that a smaller area cropped has been adopted for this model hence the whole farm result is less

than each of the individual results. The individual years fluctuate between 43 kg N leached and 65 kg N leached.

Mitigation 1 Result

The option to limit the application of any one application of N to 80 kg / ha has the impact of increasing the total amount of N leaching in Year 1 and substantially reducing the N leaching from Year 3. Overall there is no impact on the whole farm leaching result.

Mitigation 2 Result

The results of limiting the amount of applied by a 10% reduction through to 30% has a very similar response in terms of the reduction in N leaching between the years, and the treatments. Each of the reductions results in a fairly significant reduction in the whole farm result.

Mitigation 3 Result.

The use of a cover crop has had a small but significant impact on the whole farm result.

Mitigation 5 Result

The use of minimum tillage techniques has a significant impact on the amount of N leached across the whole farm.

3.2.4 Rotation Waimario

	Status Quo	M 1	M2 10%	M2 20%	M2 30%	M 3	M 5
Whole Farm	17	16	17	16	16	16	16
Pastoral	7	7	7	7	7	7	7
Year 1	61	59	61	59	57	61	61
Year 2	101	99	101	99	98	86	101
Year 3	49	42	48	47	46	49	47

Table 6: N leaching results for Rotation 1 (kg N / ha / annum)

Status Quo Results

The whole farm N leaching result is for 17 kg N leached / ha from this rotation. This is mainly to do with the fact that there is a substantial amount of pastoral land use in this rotation. The individual years fluctuate between 49 kg N leached and 101 kg N leached.

Mitigation 1 Result

The option to limit the application of any one application of N to 80 kg / ha has the impact of reducing the amount of N leaching in each of the cropping years with an overall small but significant reduction in the whole farm N leaching result.

Mitigation 2 Result

The results of limiting the amount of N applied by a 10% reduction through to 30% has a very similar response in terms of the reduction in N leaching between the years and the treatments. Each of the reductions results in a small but significant reduction in the whole farm result.

Mitigation 3 Result.

The use of a cover crop has had a small but significant impact on the whole farm result.

Mitigation 5 Result

The use of minimum tillage techniques has a small but significant impact on the amount of N leached across the whole farm.

Table 7: Gross Margins (\$ / ha)

	Total Revenue	Total Variable Expenses	Gross Margin
Potato	16,000	11,060	4,940
Barley	3,750	1,531	2,219
Livestock	1,594	545	1,049
Cabbage	25,760	20,603	5,157
Lettuce	30,220	22,938	7,282
Spinach	68,800	40,510	28,290
Squash	12,500	8,122	4,378
Onions	22,500	16,765	5,735
Broccoli	20,004	16,081	3,923
Cauliflower	23,000	19,180	3,820
Carrots	24,500	18,545	5,955
Brussel Sprouts	27,000	21,636	5,364
Maize	4,500	2,025	2,475

The financial adjustments made to the mitigation results are:

Mitigation 1

For each additional application of N an amount of \$50 / ha was added to the fertiliser costs. The \$50 / ha was the amount shown for each fertiliser application in the Lincoln Budget Manual³.

Mitigation 2

³ Lincoln University: Financial Budget Manual

Nutrient Performance and Financial Analysis of Horticultural Systems in the Horizons Region

The yield of the crop grown was adjusted by the percentages shown in appendix one. This then flowed through to a reduction in expenditure for those expenditure items which are influenced by the yield of the crop.

Mitigation 3

For each time that a cover crop was added into the rotation an additional cost of \$550 / ha was added to the Gross Margin.

Mitigation 5

No financial adjustments were made to the Gross Margins as a result of the adoption of minimum tillage practices.

3.3 Results

3.3.1 Gross Margin Results

Table 8: Financial results of mitigation strategies rotation 1. (\$ / ha / annum)

	Status Quo	M 1		M 2 20%		M 3
Gross Revenue	3,250	3,250	2,996	2,668	2,466	3,232
Variable Expenses	1,695	1,705	1,654	1,552	1,628	1,755
Gross Margin	1,555	1,545	1,342	1,117	838	1,477

Table 9: Financial results of mitigation strategies rotation 2. (\$ / ha / annum)

	Status Quo	M 1	M 2 10%	M 2 20%	M 3 30%	M 3
Gross Revenue	32,594	32,594	28,025	23,434	19,811	32,594
Variable Expenses	22,006	22,066	21,451	20,221	18,992	22,551
Gross Margin	10,588	10,108	6,574	3,213	819	10,043

Table 10: Financial results of mitigation strategies Rotation 3. (\$ / ha / annum)

	Status Quo	M 1	M 2 10%	M 2 20%	M 3 30%	M 3
Gross Revenue	63,581	63,581	54,044	45,344	38,149	63,581
Variable Expenses	46,638	46,738	43,287	39,935	36,583	46,638
Gross Margin	16,943	16,843	10,758	5,409	1,566	16,943

Table 11: Financial results of mitigation strategies Rotation 4. (\$ / ha / annum)

Status Quo M1 M2 M2 M3 M3

Nutrient Performance and Financial Analysis of Horticultural Systems in the Horizons Region

			10%	20%	30%	
Gross Revenue	8,366	8,366	7,348	6,208	5,383	8,366
Variable Expenses	5,704	5,729	5,371	5,039	4,706	6,093
Gross Margin	2,662	2,637	1,977	1,169	677	2,273

As can be seen the financial returns from the three rotations modelled vary significantly for all of the reported variables. Rotation1 is lower than rotation 2 which is higher than rotation 3.

Mitigation 1 has virtually no effect on the Gross Margin return for any of the rotations modelled.

Mitigation 2 has a steady reduction in the financial performance of the models as the amount of N applied reduces. At the 10% reduction in the amount of N applied the Gross Margin result is reduced to approximately one third to a half of that under the Status Quo situation and from there it dips towards a close to break even scenario which means that it would not be economic to grow the crop. This reflects the relatively tight margins which these crops are grown under.

Mitigation 3, which has a standard cost for each time it is used reduces the gross margin result by the number of times that it is used. In this case it is only able to be used one or two times in the rotation therefore the financial impact is relatively small.

Reduction in N	Potato (Summer), Onions, Carrots,	Squash, Broccoli, Lettuce,	Cabbage, Spinach, Cauliflower	Potato (Winter)	Barley
10%	10%	15%	15%	25%	25%
20%	20%	25%	30%	35%	35%
30%	30%	40%	40%	50%	45%

Appendix One: Average Estimated Reduction in yield with reduction in applied N.

Appendix Two : Challenges related to modelling horticultural crops in OVERSEER 6.1

The Foundation for Arable Research⁴ carried out an independent review of the use of OVERSEER in the arable sector, which incorporated consideration of the horticultural sector. It came up with the following conclusion:

OVERSEER® is the best tool currently available for estimating N leaching losses from the root zone across the diversity and complexity of farming systems in New Zealand. This review sets out a pathway for improving its fitness for this purpose in the arable sector (see

recommendations). It also highlights that the new challenges facing OVERSEER® place demands on the development team and model owners that need to be acknowledged and resourced appropriately.

⁴ FAR (2013) : A peer review of OVERSEER in relation to modelling nutrient flows in arable crops.

Nutrient Performance and Financial Analysis of Horticultural Systems in the Horizons Region

The review came up with the following recommendations which are relevant to the horticultural sector:

OVERSEER® crop model estimates of N leaching should be evaluated against measurements of N leaching to identify whether there are any systematic errors in predictions.

OVERSEER® crop model estimates of N leaching should be evaluated against predictions of longterm leaching produced by established, detailed research models e.g. APSIM.

The testing outlined in recommendations (1) and (2) is likely to identify and justify areas for further development of OVERSEER® to improve N leaching predictions.

The following list of challenges identified in this modelling exercise is not new as they have been identified in previous modelling of horticultural crops. The challenges are listed here to allow consideration of the impact of these issues on the modeller's ability to correctly model the practices undertaken by the growers. In some cases these practices are undertaken to improve the efficiency of use of N and P, the impact of which are not shown in these results.

Crops that can be modelled.

OVERSEER has a reasonable range of crops that can be modelled, however this is limited from a horticultural perspective. This has meant that the rotations used in Rotation 2 and the Traditional Market Garden were somewhat compromised by the range of crops chosen. This has meant that the rotation does not represent what would actually be grown. However, we have chosen a similar crop both in terms of inputs and outputs so the end result may not be much different. However it may not appear to be logical from a growing perspective.

Monthly time steps.

OVERSEER works on monthly time steps of data entry for items such as cultivation, fertiliser applications and irrigation inputs. Horticultural operations work on much finer time steps which are unable to be incorporated into OVERSEER. Therefore the results would appear to be much more at a gross level than you would expect for horticulture.

Incorporating side dressings.

It is not possible to incorporate the application of fertiliser as a side dressing in OVERSEER. This is a horticultural practice which directly applies the fertiliser into the root zone of the plant, which are predominantly grown in rows. Therefore this practice results in more efficient plant uptake and reduces the total gross amount of fertiliser applied.

Limited range of irrigation options.

The choice of irrigation options is limited to those that are available for pastoral farming. This means that options that are available to horticulturalists such as soak mats etc. cannot be modelled. This can be overcome by selecting the actively managed option which means that the correct amount of irrigation required can be applied. However, this still would apply much more than would be applied if the alternative options were available which just apply water to the root zone of the crop.

Currently work being undertaken which will investigate and compare the way that irrigation is modelled in OVERSEER by including a daily time series for irrigation practice which will more accurately reflect the water balance of the soil.

Fertiliser options limited.

One of the mitigation options which we wished to test in this exercise is the use of slow release fertilisers. The range of fertiliser options available is limited to the standard range from each of the two major companies. Therefore it was not possible to test the impact of the application of slow release fertilisers. However, slow release fertilisers may not be able to adequately meet the crops requirement as there are certain times when vegetable crops have very high demand on N.

Nutrient Performance and Financial Analysis of Horticultural Systems in the Horizons Region

Appendix Three: Gross Margins

Gross Margin	Status Quo	Rotation 1			
	Potato	Barley	Livestock	Average	
		-		10	
Income	50	10			
Yield	320	375			
Price					
Total Revenue	16000	3750	1594	3,250	
Expenses					
Seed		250			
Cultivation	2700	220			
Fertiliser	480	230			
Agri Chem	1000	205			
Irrigation	520	187			
Harvesting		250			
Land lease	2500				
Grading	1500				
Packing	640				
Freight		189			
Commision	1600				
Levys.					
	120				
Total Expenses	11060	1531	545	1,695	
Gross Margin	4940	2219	1049	1,555	

Gross Margin		Rotatio	n 2					
	Cabbage	Lettuce	Spinach	Squash	Onions	Livestock	Average	
Income								
Yield	70	10	40	25	50			
Price	368	3,022	1,720	500	450			
Total Revenue	25,760	30,220	68,800	12,500	22,500	1594	32,594	162,96
Expenses								
Seed	1,411	2,641	480	700	850			
Cultivation	2,715	2,964	1,995	1,190	1,190			
Fertiliser	1,573	1,419	1,600	880	1,750			
Agri Chem	1,089	1,089	710	760	2,150			
Irrigation	-	-	-	-	-			
Harvesting	1,500	1,650	15,000	1,375	1,800			
Land lease	1,625	1,625	1,625	1,000	1,000			
Grading	1,500	1,650	3,750	600	3,375			
Packing	1,500	1,650	3,750	260	3,375			
Freight	4,500	4,500	3,050	1,350	1,125			
Commision	3,075	3,625	8,250	-	-			
Levys.	115	125	300	7	150			
Total Expenses	20,603	22,938	- 40,510	8,122	- 16,765	545	22,006	110,02
Gross Margin	5,157	7,282	28,290	4,378	5,735	1049	10,588	52,94

Nutrient Performance and Financial Analysis of Horticultural Systems in the Horizons Region

Gross Margin		Rotatio	n 3				
	Broccoli	Spinach	Lettuce	Cabbage	Cauliflower	Cabbage	Average
Income							
Yield	12	30	10	70	20	70	
Price	1667	2,200	3,022	368	1150	368	
Total Revenue	20004	66,000	30,220	25,760	23000	25,760	63,581
Expenses							
Seed	315	480	2,641	1,411	2700	1,411	
Cultivation	1120	1,995	2,964	2,715	1055	2,715	
Fertiliser	1850	1,600	1,419	1,573	1230	1,573	
Agri Chem	1700	710	1,089	1,089	550	1,089	
Irrigation	0	-	-	-		-	
Harvesting	2000	15,000	1,650	1,500	1500	1,500	
Land lease	2500	1,625	1,625	1,625	1750	1,625	
Grading	0	3,750	1,650	1,500	0	1,500	
Packing	1650	3,750	1,650	1,500	4055	1,500	
Freight	2325	3,050	4,500	4,500	4125	4,500	
Commision	2530	8,250	3,625	3,075	2100	3,075	
Levys.	91	300	125	115	115	115	
Total Expenses	16081	40,510	22,938	20,603	19180	20,603	46,638
Gross Margin	3923	25,490	7,282	5,157	3820	5,157	16,943

Gross Margin		Rotatio	n 4			
Income	Potato	Carrots	Brussel Sp	Maize	Livestock	Average
Yield	55	70	12	18		
Price	300	350	2250	250		
Total Revenue	16500	24500	27000	4500	1594	8,366
Expenses						
Seed	1955	1650	1366	400		
Cultivation	600	2400	1320	300		
Fertiliser	1044	1200	2800	750		
Agri Chem	1600	700	1900	575		
Irrigation	0	0				
Harvesting	788	1320	3600			
Land lease	1500	1700	1500			
Grading	0	0	2640			
Packing	625	0				
Freight	2750	6000	2160			
Commision	0	3375	4200			
Levys.	157	200	150			
Total Expenses	11019	18545	21636	2025	545	5,704
Gross Margin	5481	5955	5364	2475	1049	2,662

Appendix Four: Core assumptions made in modelling in OVERSEER.

The standard location parameters for Horizons Region were selected and all models were modelled on Manawatu Silt Loam soils.

Rotation choice details are as follows.

Rotation 1 Cash Cropping

Сгор	Plant Date	Kg N/ ha.	Fertiliser timing	Harvest Date	Yield T / ha
Potato's	September	200	Planting	March	50
		75	Side dressing at 6		
		75	week intervals		
Barley	July	100	October	Feb	10 T
		100	November		

Rotation 2 Intensive Vegetable / Mixed Arable

Crop	Plant	Kg N / ha	Fertiliser timing	Harvest Date	Yield T / ha
Cabbage	May	200	Planting	August	70
		200	6 weeks later.		
Lettuce	Sept	25	Planting	Feb	10
		50	4 weeks post		
		75	8 weeks post		
Spinach	March	180	Planting	June	40
		60	4 weeks post		
		80	8 weeks post		
Squash	Oct	80	Planting	March	25
Onions	June	50	Evenly spaced	Dec / Jan	50 t
		50			
		40			

Rotation 3 Market Garden

Сгор	Plant Date	Kg N / ha	Fertiliser timing	Harvest Date	Yield T / ha
Broccoli	October	95	At planting banded	Feb	12
		70	+ 5 weeks		
Spinach	March	180	Planting	June	40
		60	4 weeks post		
		80	8 weeks post		
Lettuce	September	90	planting	Feb	10 T

		60	+ 4 weeks		
Cabbage	May	200	Planting banded	August	70
		200	+ 6 weeks		
Cauliflower	September	135	Planting	November	20
		100	6 week interval		
Cabbage	December	80	Planting banded	February	70
		100	+ 6 weeks		

Rotation 4 Waimarino

Сгор	Plant Date	Kg N / ha	Fertiliser timing	Harvest Date	Yield T / ha
Potato	Oct	200	Planting	April	55
		75	Side dressing at 6 week		
		75	intervals		
Carrots	Oct	180	Planting	March	75
		90	4 weeks post		
		90	8 weeks post		
Brussel	April	135	planting	August	12
Sprouts		100	+ 4 weeks		
Maize	Oct	100	Planting	March	18
		150	+ 6 weeks		

Appendix Five: Results of Practice Questions in the Survey.

How much history is available of lease	Long term only
blocks	
Do you factor rainfall into your irrigation	Yes
Information sought from the leasor.	Yes
Are you able to list or describe	Crop history, nutrient history, presence of
	disease etc.
	Yes important & required by the operator

	Yes	No	
Upgrade Tractors	16	3	
Purpose	less cost of inputs		
	Soil management, t compactio	Soil management, \downarrow compaction, \uparrow efficiency and accuracy of	
	all operations		
	To enable GPS use		
	More efficient		
Proof of Result	improved yields		
	Reduce N use		

	Yes	No	
Controlled Traffic	9	10	
Purpose	less cost of inputs		
	Soil management,↓	Soil management,↓ compaction, ↑ efficiency and accuracy of	
	all operations	all operations	
	More efficiency	More efficiency	
	Reduce environmen	Reduce environmental impact	
Proof of Result	yields have increase	yields have increased	
	Accurate placement	Accurate placement	

	Yes	No
Advanced farming systems	7	12
Purpose	less cost of inputs	
	Soil management, ↑ efficiency and accuracy of all operations	
	Cost effectiveness	
	Right amount of fert & water is the aim. NZGAP has been a	
	trigger in helping improve efficiency	
Proof of Result	yields have increased	
	Cost effectiveness	

	Yes	No
Record keeping	16	2
Purpose	To achieve better yields NZGAP	
	less cost of inputs	
	Traceability, comparisons within years and crops	
	Good business practice	
Proof of Result	yields have increased	
	Accurate placement	
	Better yields	
	Accurate placement	

	Yes	No	
Increased Training	7	12	
Purpose	less cost of inputs		
	↑ efficiency all operations/safe	↑ efficiency all operations/safety operations/↓Hazards	
	Must take long term custodial view		
	Better soil management	<u> </u>	
Proof of Result	yields have increased		
	↓cost, ↑yield,↓accidents		
	Yields of some varieties have	increased	

	Yes	No	
Agronomy advice	12	7	
Purpose	Fertiliser managemer	nt	
	less cost of inputs		
	↑ efficiency in all oper	↑ efficiency in all operations/ saving / better systems/Improve	
	the quality of crops	the quality of crops	
	to increase yields	to increase yields	
	Fertiliser efficiency	Fertiliser efficiency	
Proof of Result	yields have increased	1	
	↓cost, ↑max yield		
	Believes is now		

Good Nutrient Management

		Yes	No
Nutrients app	lied	16	3
according to standards			
Purpose		Need to look after lessors la	nd to ensure they can lease
		again	
		Testing means acting on today's issues & not based on	
		historical views	
		Soil management, ↑efficienc	y in use and application of
		fertilisers	
		Always important to ensure co	sts are kept down. Costs drive
		efficiencies	

	Lush growth does not mean better results Don't want to waste nutrients and therefore money Soil management & yield increase
Proof of Result	Are now able to crop land previously no go. Years of growing history tells what works on a farm Seen benefits on occasion when did not use recommendations

	Yes	No
Soil Testing every 3 to 5	12	7
years.		
Purpose	Testing means acting on too	lay's issues & not based on
	historical views	
	Soil management, max yield,	
	Every crop every year	
	Fert cots \$1000/t. you don't want to use more than you have	
	to	
	Don't want to waste nutrients and therefore money	
Proof of Result	Are now able to crop land previously no go ????	
	↓fertilizer usage, ↓cost, ↑yield	

	Yes	No
Spreading equipment is available.	17	2
Purpose	More efficiency	
	Save Fert, ↓cost, application efficiency	
Proof of Result	↓fertilizer usage	

Good Irrigation Management

	Yes	No
Irrigation applied allows	3	15
Purpose	Area has high water table important to retain nutrients in	level so good drainage is root zone
Proof of Result	Overall farm costs have com much higher level	e down. Yields are now at a

	Yes	No
Equipment is calibrated.	4	13
Purpose	Soil management, Fertilizer ma	anagement
Proof of Result		
	Yes	No
Water is applied to achieve.	4	14

Purpose	Economic and environment reasons Better sustainab;le soils
Proof of Result	Yield improvements and better soil structure

Best Nutrient Management

	Yes	No
Soil testing	6	13
Purpose	Soil management, Fertilizer management	
Proof of Result	↓ amount of fert usage	

	Yes	No
Petiole testing.	1	17
Purpose		
Proof of Result		

	Yes	No
Tarra type systems.	0	19
Purpose		
Proof of Result		

		Yes	No
Technology variable rate	informs	0	19
Purpose			
Proof of Result			

	Yes	No
Proof of placement.	0	19
Purpose		
Proof of Result		

Best Irrigation Management

	Yes	No
Soil Moisture Monitoring	3	13
Purpose		
Proof of Result		

	Yes	No
Variably applied.	3	13
Purpose	Save water, ↑ Yield, ↑quality cr	ор
Proof of Result	↓cost, Max yield	

	Yes	No
Irrigation efficiency.	2	14
Purpose		
Proof of Result		

	Yes	No
More frequent application	3	13
Purpose		
Proof of Result		

Soils that you seek.	Fertile
	Free draining
Soil properties that you look for.	Depth & no stones
	No. Crop rotation is dependent on land
	availability
	Paddock history (crop rotation and disease
	P°), Irrigation availability, Soil type, Harvest
	time
	Free draining: uncropped fresh ground
	Depth of topsoil, zero erosion, flat land, no
	runoff to streams
	Disease
	Depth, Organic matter
How often do you achieve target yields	range from 80% to 100%.
If not why not.	Water related
	Climate extremes
	Climatic conditions
	Pest and Diseases, supply and demand,
	limiting factors
	Weather, market conditions
	Insect pest & climate
	Too much water
	Never happened
	Disease & lack of water
What do you do if not economic yield	Cropped ripped and lessors stock clean it up
	Ploughed back in
	Graze off fruit & incorporate remainder
	Incorporated back into the ground, fed to
	stock

	Harvest available, incorporate residuals
	Sell some. Rest is incorporated
	Residuals always incorporated, no clear cut
	answers
	Ploughed back in
	Try & talk market up, residuals are
	incorporated
	Stock food, sometimes juicing.
Is your information well documented.	Problematic, most in head but fert in diary
	Well organised grower with good
	computerised records. Once again costs of
	grading & packing an area of difficulty
	Absolutely, very professional
	We have records of all our operations; we
	use Cropwalker and crop books
	Good fert & agchem. C.O.P figures are
	father's domain and phone calls had to be
	made to verify some costs
	Fert and application records were well kept
	Fert & Agchem = yes. Not for other inputs
	Make the call. Harvest if market allows &
	incorporate what is left the head
	I would suspect that record keeping is not
	good. Some info is in his lphone but most of
	it is in his head
	All records in head
	Some very detailed information regarding
	planting densities, fert rates & applications &
	agchem use. Most data i.e cost of production
	while good is on the head
	Yes I believe itis good. However some
	serious deficiencies in records in respect of
	costs of production