Schedule D: Surface Water^ Quality Standards1

SCHEDULE D TABLE OF CONTENTS:

Page Numbers	Section
<u>D-2</u>	Table D.1a Region-wide Water^ Quality Standards
<u>D-3 – D-10</u>	Table D.2a Water^ Quality Standards for Rivers^ and Streams in each Water Management Sub-zone^
<u>D-11</u>	Table D.3a Additional Water^ Quality Standards that apply to all streams and rivers^ identified as being managed for Trout Spawning
<u>D-15</u>	Table D.4a Lake^ Water^ Quality Standards
<u>D-16</u>	FOLD-OUT WATER^ QUALITY STANDARDS KEY

USER GUIDE: How to use the contents of the schedule

Step 1: Identify which WMSZ your proposed activity lies in (go to Part 1 of Schedule Ba)

Step 2: Review the VALUES your WMSZ is being managed for (go to Part 2 of Schedule Ba)

Step 3: Identify which Standards apply to your activity using steps a - c:

- a. <u>A river^ or stream:</u>
 - <u>i.</u> Turn first to Table D1a Region-Wide Water^A Quality Standards to see the standards that apply to all natural river^A and stream waters in the region.
 - ii. Then turn to Table D2a Water^ Quality Standards By Sub-Zone and review the numerical standards that have been set to maintain the various values assigned to the rivers^ and streams in your WMSZ
 - iii. If the water body at the site of your proposed activity is identified for Trout Spawning, turn to Table D3a: Additional Water^ Quality Standards for Rivers^ and Streams managed for Trout Spawning, to see additional standards that apply from 1 May to 30 September (inclusive).
- b. <u>A natural lake^:</u>
 - . Turn to Table E.2(b) to determine if your lake is excluded from this description by clauses iv to ix
 - ii. If your lake is not excluded by Table E.2(b) iv to ix then turn to Table D4a: Lake Water Quality Standards
 - iii. Determine if the lake meets the description of a "deep" or "shallow" lake^ from the footnote of Table D4a and see the standards that apply to the lake^ water^ in Table D4a.
- c. Water bodies in the *Coastal Marine Area*[^] (i.e. the sea and estuarine zones of *rivers*[^] and streams):
 - i. Turn to Tables H:4a H:7a in Schedule H to see the standards that apply to waters in the Coastal Marine Area^.

Note: All water body values, management objectives, water management zones, sub-zones and associated maps and tables have been removed from Schedule D and are now found in Schedule Ba (Rivers, streams and lakes) and Schedule H (Coastal Marine Area) of the track changed version of the Plan presented in the Officer's report.

USER NOTE: For table abbreviations - please refer to the fold-out A3 STANDARDS KEY at the back of this schedule.

D1: Standards that apply to all natural streams and rivers^

Additional Water quality standards

Additional standards applying to all natural stream and river waters:

- 1. The concentration of *Escherichia coli* when the river or stream flow is at or below median flow shall not exceed 260 per 100 millilitres. This standard applies during the period 1st November to 30th April inclusive, and
- 2. The concentration of *Escherichia coli* when the river or stream flow is at or below three times median flow shall not exceed 550 per 100 millilitres. This standard applies year round.
- 3. The concentration of toxins due to cyanobacteria (blue-green algae) shall not exceed 20 milligrams per cubic metre. This standard applies year round.

		Table D	:1a <u>Region-wide <i>Wat</i>e</u>	er^ Quality Standards that apply to all nat	ural streams and rivers ^A : ²	
<u>Management Zone</u>	Sub-Zone	<u>E.coli /</u>	<u>(100 ml) < 20th%ile</u>	Periphyton Cover	Diatom or Cyanobacterial Cover	<u>QMCI</u> <u>%Δ3</u>
<u>All Water</u> <u>Management Zones*</u>	<u>All Water</u> <u>Management Sub-</u> <u>Zones</u>	<u>260</u>	<u>550</u>	<u>30%</u>	<u>60%</u>	<u>20</u>

² Note that this is not new information, just the Additional Water Quality Standards placed in table format

³ This standard is only relevant for measuring the percentage change in Quantitative Macroinvertebrate Community Index (QMCI) upstream and downstream of activities, such as discharges to water, for the purposes of measuring the effect of discharges^A on aquatic macroinvertebrate communities, it is not an appropriate standard for the measurement of the general state of macroinvertebrate communities in each Water Management Sub-zone.

Schedule D: Standards – By Water Management Sub-zone

Table D.17: Water quality standards for rivers and streams in each Water Management Sub-zone (Note: refer to and for water quality standards applying to rivers and streams flowing into natural lakes)

<u>T</u>	able D.2a: Water Quali	ity Standar	ds for	River	s and	Streams in	each Wate	er Manage	ement Sub-	zone (Noi	te: refer to	Table D.4a f	or the wat	er quality stand	ards tha	at apply	to natur	al lakes	s):		
Management	Sub-zone	рH		Tei (°	mp C)	DO (%SAT)	<u>sc</u> BOD₅ (g/m³)	POM (g/m³)	Periph	iyton	DRP (m g/m³)	SIN (m g/m³)	QMCI⁴	Ammonia <u>cal</u> <u>Nitrogen</u> (m g/m³)	Tox.	Ŧ	urbidity	' (NTU)		Clari (m)	ity)
Zone		Range	Δ	<	∆ ⁵	>	<	<	Chla Chl a (mg/m²)	% cover	<	<	2	<	<u>%</u>	<1 <u>/2</u> m	≺m	<-3 xm	₽	<u>< 50th %ile</u>	<u>%</u> ∆
	Upper Manawatu (Mana_1a)	7 to 8.5	0.5	19	3	80	4 <u>1.5</u>	2.5 5	120	30	10 0.010	167 <u>0.167</u>	6 120	4 00 <u>0.400</u>	99	1		15	20	<u>3</u>	20
Upper Manawatu (Mana_1)	Mangatewainui (Mana_1b)	7 to 8.5	0.5	19	3	80	1 <u>1.5</u>	<u>2.5</u> 5	120	30	10 0.010	167 <u>0.167</u>	6 <u>120</u>	4 00 <u>0.400</u>	99	1		15	20	<u>3</u>	20
	Mangatoro (Mana_1c)	7 to 8.5	0.5	19	3	80	1 <u>1.5</u>	2.5 5	120	30	10 <u>0.010</u>	110 <u>0.110</u>	6 <u>120</u>	4 00 <u>0.400</u>	99	4		20	20	<u>3</u>	20
Weber-Tamaki	Weber-Tamaki (Mana_2a)	7 to 8.5	0.5	19	2	80	1 <u>1.5</u>	2.5 5	120	30	10 <u>0.010</u>	444 <u>0.444</u>	6 <u>120</u>	4 00 <u>0.400</u>	99	4		15	20	<u>3</u>	20
(Mana_2)	Mangatera (Mana_2b)	7 to 8.5	0.5	22	3	70	2	5	120	30	10 <u>0.010</u>	444 <u>0.444</u>	5 100	4 00 <u>0.400</u>	99			15	30	<u>2.5</u>	30
Upper Tamaki (Mana_3)	Upper Tamaki	7 to 8.2	0.5	19	2	80	1 <u>1.5</u>	2.5 5	50	30	6 <u>0.006</u>	70 0.070	6 <u>120</u>	320 <u>0.320</u>	99			5	20	<u>3</u>	20
Upper Kumeti (Mana_4)	Upper Kumeti	7 to 8.2	0.5	19	2	80	1 <u>1.5</u>	2.5 5	50	30	6 <u>0.006</u>	70 0.070	6 <u>120</u>	320 0.320	99			5	20	<u>3</u>	20
	Tamaki-Hopelands (Mana_5a)	7 to 8.5	0.5	19	3	80	1 <u>1.5</u>	2.5 5	120	30	10 0.010	444 <u>0.444</u>	6 <u>120</u>	4 00 <u>0.400</u>	99	1		15	20	<u>3</u>	20
Tamaki-	Lower Tamaki (Mana_5b)	7 to 8.5	0.5	22	3	70	2	5	120	30	10 0.010	444 <u>0.444</u>	5 <u>100</u>	400 0.400	99			15	30	<u>2.5</u>	30
Hopelands (Mana_5)	Lower Kumeti (Mana_5c)	7 to 8.5	0.5	22	3	70	2	5	120	30	10 0.010	444 <u>0.444</u>	5 100	400 0.400	99			15	30	<u>2.5</u>	30
(mana_J)	Oruakeretaki (Mana_5d)	7 to 8.5	0.5	22	3	70	2	5	120	30	10 <u>0.010</u>	444 <u>0.444</u>	5 <u>100</u>	400 <u>0.400</u>	99			15	30	<u>2.5</u>	30
	Raparapawai (Mana_5e)	7 to 8.5	0.5	22	3	70	2	5	120	30	10 <u>0.010</u>	444 <u>0.444</u>	5 <u>100</u>	4 00 <u>0.400</u>	99			15	30	<u>2.5</u>	30

⁵ Changes in temperature resulting from habitat improvement and/or riparian restoration are exempt from the temperature change standard.

⁴ The Macroinvertebrate Community Index (MCI) standard applies only for State of the Environment monitoring purposes to determine if the aquatic macroinvertebrate communities are adequate to provide for and maintain the values in each WMSZ, this standard is not appropriate for monitoring the effect of activities such as discharges to water on macroinvertebrate communities upstream and downstream of the activity.

I	able D.2a: Water Qual	ity Standar	rds for	River	s and	Streams ir	n each Wate	er Manage	ement Sub-	zone (No	te: refer to	Table D.4a f	or the wat	er quality stand	ards tha	at apply 1	to natu	ral lakes	s):		
Management	Sub <u>-</u> zone	рН			mp C)	DO (%SAT)	<u>sc</u> BOD₅ (g/m³)	POM (g/m³)	Periph	nyton	DRP (m g/m³)	SIN (m g/m³)	QMCI⁴	Ammonia <u>cal</u> <u>Nitrogen</u> (m g/m³)	Tox.	Ŧ	urbidity	/ (NTU)		Clari (m)	ity)
Zone		Range	Δ	<	∆ 5	>	<	<	Chla Chl a (mg/m ²)	% cover	<	<	2	<	<u>%</u>	<1/2 #	< m	ፈ *	A	<u>< 50th %ile</u>	<u>%</u> ∆
Hopelands- Tiraumea (Mana_6)	Hopelands- Tiraumea	7 to 8.5	0.5	19	3	80	1 <u>1.5</u>	2.5 5	120	30	10 <u>0.010</u>	444 <u>0.444</u>	6 <u>120</u>	4 00 <u>0.400</u>	99	1		15	20	<u>3</u>	20
	Upper Tiraumea (Mana_7a)	7 to 8.5	0.5	23	3	70	2	5	120	30	10 0.010	444 0.444	5 100	4 00 0.400	95	2.5	20		30	<u>2</u>	30
Tiraumea	Lower Tiraumea (Mana 7b)	7 to 8.5	0.5	23	3	70	2	5	120	30	10 0.010	444 0.444	5 100	400 0.400	95	<u>2.5</u>	<u>20</u>		30	<u>2</u>	30
(Mana_7)	Mangaone River (Mana 7c)	7 to 8.5	0.5	23	3	70	2	5	200	30	10 0.010	444	5 100	4 00 0.400	95		20		30	<u>1.6</u>	30
	Maha_70) Makuri (Mana 7d)	7 to 8.5	0.5	19	2	80	1 1.5	<u>2.5</u> 5	120	30	<u>10</u> 0.010	<u>0.444</u> <u>110</u> 0.110	6 120	400 0.400	99	4		15	20	<u>3</u>	20
	Upper Mangatainoka (Mana_8a)	7 to 8.2	0.5	19	2	80	4 <u>1.5</u>	2.5 5	50	30	6 0.006	70 0.070	6 <u>120</u>	320 0.320	99	1		5	20	<u>3</u>	20
Mangatainoka	Middle Mangatainoka (Mana_8b)	7 to 8.5	0.5	19	3	80	1 <u>1.5</u>	<u>2.5</u> 5	120	30	10 <u>0.010</u>	444 <u>0.444</u>	6 <u>120</u>	400 <u>0.400</u>	99	4		15	20	<u>3</u>	20
(Mana_8)	Lower Mangatainoka (Mana_8c)	7 to 8.5	0.5	19	3	80	1 <u>1.5</u>	2.5 5	120	30	10 <u>0.010</u>	444 <u>0.444</u>	6 <u>120</u>	4 00 <u>0.4</u>	99	4		15	20	<u>3</u>	20
	Makakahi (Mana_8d)	7 to 8.5	0.5	19	3	80	1 1.5	2.5 5	120	30	10 0.010	444 0.444	6 120	400 0.400	99	4		15	20	<u>3</u>	20
	Mangaramarama (Mana 8e)	7 to 8.5	0.5	22	3	70	2	5	200	30	10 0.010	444 0.444	5 100	400 0.400	95		20		30	<u>1.6</u>	30
	Upper Gorge (Mana 9a)	7 to 8.5	0.5	22	3	70	2	5	120	30	10 0.010	444 0.444	5 100	400 0.400	95	2.5		15	30	<u>2.5</u>	30
	Mangapapa (Mana 9b)	7 to 8.5	0.5	22	3	70	2	5	120	30	10 0.010	444 0.444	5 100	400 0.400	95			15	30	<u>2.5</u>	30
Upper Gorge (Mana 9)	Mangaatua (Mana 9c)	7 to 8.5	0.5	22	3	70	2	5	120	30	10 0.010	444 0.444	5 100	4 00 0.400	95			15	30	<u>2.5</u>	30
(······ <u>-</u> -)	Upper Mangahao (Mana 9d)	7 to 8.2	0.5	19	2	80	1 1.5	2.5 5	50	30	6 0.006	<u>167</u> 0.167	6 120	320 0.320	99	<u>2.5</u>		5	20	<u>3</u>	20
	Lower Mangahao (Mana_9e)	7 to 8.5	0.5	22	3	70	2	5	120	30	<u>10</u> <u>0.010</u>	444 <u>0.444</u>	5 100	400 0.400	95	2.5		15	30	<u>2.5</u>	30

<u>T</u>	able D.2a: Water Qual	lity Standaı	rds for	River	s and	Streams in	each Wate	er Manage	ement Sub-	zone (No	te: refer to	Table D.4a f	or the wat	er quality stand	ards tha	at apply i	to natur	al lakes	<u>s):</u>		
Management	Sub-zone	рН			mp C)	DO (%SAT)	<u>sc</u> BOD₅ (g/m³)	POM (g/m³)	Periph	yton	DRP (m g/m³)	SIN (m g/m³)	QMCI⁴	Ammonia <u>cal</u> <u>Nitrogen</u> (m g/m³)	Tox.	Ŧ	urbidity	(NTU)		Clari (m	ity)
Zone	<u>-</u>	Range	Δ	<	∆ ⁵	>	<	<	Chla Chl a (mg/m²)	% cover	<	<	2	<	<u>%</u>	<1/2 ₩	< m	<-3 ×m	₽	<u>< 50th %ile</u>	<u>%</u> Δ
	Middle Manawatu (Mana_10a)	7 to 8.5	0.5	22	3	70	2	5	120	30	10 0.010	444 <u>0.444</u>	5 100	4 00 <u>0.400</u>	95	2.5		15	30	<u>2.5</u>	30
	Upper Pohangina (Mana_10b)	7 to 8.2	0.5	19	2	80	1 <u>1.5</u>	<u>2.5</u> 5	120	30	6 <u>0.006</u>	70 <u>0.070</u>	6 <u>120</u>	320 <u>0.320</u>	99	2.5		5	20	<u>3</u>	20
Middle Manawatu (Mana_10)	Middle Pohangina (Mana_10c)	7 to 8.5	0.5	22	3	70	2	5	120	30	10 0.010	110 <u>0.110</u>	5 100	4 00 <u>0.400</u>	95	2.5		15	30	<u>2.5</u>	30
	Lower Pohangina (Mana_10d)	7 to 8.5	0.5	22	3	70	2	5	120	30	10 0.010	110 <u>0.110</u>	5 100	4 00 <u>0.400</u>	95	<u>2.5</u>		15	30	<u>2.5</u>	30
	Aokautere (Mana_10e)	7 to 8.5	0.5	22	3	70	2	5	120	30	10 0.010	110 <u>0.110</u>	5 100	4 00 0.400	95			15	30	<u>2.5</u>	30
	Lower Manawatu (Mana_11a)	7 to 8.5	0.5	22	3	70	2	5	120	30	10 0.010	444 <u>0.444</u>	5 <u>100</u>	4 00 <u>0.400</u>	95	2.5		15	30	<u>2.5</u>	30
	Turitea (Mana_11b)	7 to 8.2	0.5	19	2	80	4 <u>1.5</u>	2.5 5	50	30	6 <u>0.006</u>	70 <u>0.070</u>	6 120	320 0.320	99	2.5		5	20	<u>3</u>	20
	Kahuterawa (Mana_11c)	7 to 8.2	0.5	19	2	80	4 <u>1.5</u>	<u>2.5</u> 5	50	30	6 <u>0.006</u>	70 <u>0.070</u>	6 <u>120</u>	320 <u>0.320</u>	99	2.5		5	20	<u>3</u>	20
Lower Manawatu (Mana_11)	Upper Mangaone Stream (Mana_11d)	7 to 8.5	0.5	24	3	60	2	5	200	30	10 <u>0.010</u>	444 <u>0.444</u>	5 <u>100</u>	4 00 <u>0.400</u>	95			15	30	<u>2.5</u>	30
	Lower Mangaone Stream (Mana_11e)	7 to 8.5	0.5	24	3	60	2	5	200	30	10 <u>0.010</u>	444 <u>0.444</u>	5 <u>100</u>	4 00 <u>0.400</u>	95			15	30	<u>2.5</u>	30
	Main Drain (Mana_11f)	7 to 8.5	0.5	24	3	60	2	5	200	30	15 <u>0.015</u>	444 <u>0.444</u>	5 100	4 00 <u>0.400</u>	95			15	30	<u>2.5</u>	30
	Upper Oroua (Mana_12a)	7 to 8.5	0.5	22	3	70	2	5	120	30	10 0.010	167 0.167	5 100	4 00 0.400	95	2.5		15	30	<u>2.5</u>	30
	Middle Oroua (Mana_12b)	7 to 8.5	0.5	22	3	70	2	5	120	30	10 0.010	444 <u>0.444</u>	5 100	4 00 0.400	95	<u>2.5</u>		15	30	<u>2.5</u>	30
Oroua (Mana_12)	Lower Oroua (Mana_12c)	7 to 8.5	0.5	24	3	70	2	5	200	30	15 0.015	444 <u>0.444</u>	5 100	4 00 <u>0.400</u>	95	2.5		15	30	<u>2.5</u>	30
	Kiwitea (Mana_12d)	7 to 8.5	0.5	22	3	70	2	5	120	30	10 0.010	167 <u>0.167</u>	5 100	4 00 <u>0.400</u>	95			15	30	<u>2.5</u>	30
	Makino (Mana_12e)	7 to 8.5	0.5	24	3	70	2	5	120	30	15 <u>0.015</u>	444 <u>0.444</u>	5 100	400 0.400	95	2.5		15	30	<u>2.5</u>	30

<u>T</u> ;	able D.2a: Water Quali	ity Standar	ds for	River	s and	Streams in	each Wate	r Manage	ement Sub-	zone (No	te: refer to	Table D.4a f	or the wat	ter quality stand	ards tha	at apply	to natu	ral lakes	<u>s):</u>		
Management	Sub-zone	рН		Tei (°	mp C)	DO (%SAT)	<u>sc</u> BOD₅ (g/m³)	POM (g/m³)	Periph	yton	DRP (m g/m³)	SIN (m g/m³)	QMCI⁴	Ammonia <u>cal</u> <u>Nitrogen</u> (m g/m³)	Tox.	Ŧ	urbidity	' (NTU)		Clari (m)	
Zone		Range	Δ	<	∆ ⁵	>	<	<	Chla Chl a (mg/m²)	% cover	<	<	<u></u>	<	<u>%</u>	<1/2 ₩	≺m	ፈዓ ¥⊞	A	<u>< 50th %ile</u>	<u>%</u> ∆
	Coastal Manawatu (Mana_13a)	7 to 8.5	0.5	24	3	70	2	5	200	30	15 0.015	444 0.444	5 100	400 0.400	95	2.5		15	30	<u>2.5</u>	30
	Upper Tokomaru (Mana_13b)	7 to 8.2	0.5	19	2	80	4 1.5	<u>2.5</u> 5	50	30	6 0.006	70 0.070	6 120	320 0.320	99	2.5		5	20	<u>3</u>	20
Coastal Manawatu	Lower Tokomaru (Mana_13c)	7 to 8.5	0.5	24	3	70	2	5	120	30	10 0.010	444 0.444	5 100	400 0.400	95	<u>2.5</u>		15	30	<u>2.5</u>	30
(Mana_13)	Mangaore (Mana_13d)	7 to 8.5	0.5	22	3	70	2	5	120	30	10 0.010	165	5 100	400 0.400	95			15	30	<u>2.5</u>	30
	Koputaroa (Mana_13e)	7 to 8.5	0.5	24	3	60	2	5	200	30	15 0.015	444 0.444	5 100	400 0.400	95			15	30	<u>2.5</u>	30
	Foxton Loop (Mana_13f)	7 to 8.5	0.5	24	3	60	2	5	200	30	15 0.015	444 0.444	5 100	400 0.400	95			15	30	<u>2.5</u>	30
Upper Rangitikei (Rang_1)	Upper Rangitikei	7 to 8.2	0.5	19	2	80	1 <u>1.5</u>	2.5 5	50	30	6 0.006	70 0.070	6 120	320 0.320	99	0.6		3.5	20	<u>3.4</u>	20
	Middle Rangitikei (Rang_2a)	7 to 8.2	0.5	19	2	80	1 <u>1.5</u>	2.5 5	50	30	6 <u>0.006</u>	70 0.070	6 120	320 <u>0.320</u>	99	0.6		3.5	20	<u>3.4</u>	20
	Pukeokahu – Mangaweka (Rang_2b)	7 to 8.5	0.5	19	3	80	4 <u>1.5</u>	2.5 5	120	30	10 <u>0.010</u>	110 <u>0.110</u>	6 <u>120</u>	320 <u>0.320</u>	99	0.6		3.5	20	<u>3.4</u>	20
Middle Rangitikei	Upper Moawhango (Rang_2c)	7 to 8.2	0.5	19	2	80	1 1.5	2.5 5	50	30	6 0.006	70 0.070	6 120	320 0.320	99	2.5		5	20	<u>3</u>	20
(Rang_2)	Middle Moawhango (Rang_2d)	7 to 8.5	0.5	19	2	80	1 <u>1.5</u>	5	120	30	10 0.010	110 <u>0.110</u>	5 100	400 <u>0.400</u>	95	2.5		15	30	<u>2.5</u>	30
	Lower Moawhango (Rang_2e)	7 to 8.5	0.5	22	3	70	2	5	120	30	10 0.010	110 <u>0.110</u>	5 100	400 <u>0.400</u>	95	2.5	20		30	<u>2</u>	30
	Upper Hautapu (Rang_2f)	7 to 8.5	0.5	19	2	80	1 <u>1.5</u>	2.5 5	120	30	10 0.010	110 0.110	6 120	4 00 <u>0.400</u>	99	4		15	20	<u>3</u>	20
	Lower Hautapu (Rang_2g	7 to 8.5	0.5	22	3	70	2	5	120	30	10 <u>0.010</u>	110 <u>0.110</u>	5 100	4 00 <u>0.400</u>	95	2.5	20		30	<u>2</u>	30
Lower Rangitikei	Lower Rangitikei (Rang_3a)	7 to 8.5	0.5	19	3	80	1 <u>1.5</u>	2.5 5	120	30	10 <u>0.010</u>	110 <u>0.110</u>	6 <u>120</u>	4 00 <u>0.400</u>	99	4		15	20	<u>3</u>	20
(Rang_3)	Makohine (Rang_3b)	7 to 8.5	0.5	22	3	70	2	5	200	30	10 0.010	110 0.110	5 100	4 00 0.400	95		20		30	<u>1.6</u>	30
Coastal Rangitikei (Rang_4)	Coastal Rangitikei (Rang_4a)	7 to 8.5	0.5	22	3	70	2	5	120	30	10 0.010	110 <u>0.110</u>	5 100	4 00 <u>0.400</u>	95	2.5		15	30	<u>2.5</u>	30

<u>T</u> ;	able D.2a: Water Quali	ity Standar	ds for	River	's and	Streams in	each Wate	er Manage	ement Sub-	zone (No	te: refer to	Table D.4a f	or the wat	er quality stand	ards tha	at apply	to natur	al lakes	<u>s):</u>		
Management	Sub-zone	pH			mp C)	DO (%SAT)	<u>sc</u> BOD₅ (g/m³)	POM (g/m³)	Periph	yton	DRP (m g/m³)	SIN (m g/m³)	QMCI⁴	Ammonia <u>cal</u> <u>Nitrogen</u> (m g/m³)	Тох.	Ŧ	urbidity	' (NTU)		Clari (m)	
Zone		Range	Δ	<	∆ 5	>	<	<	Chla Chl a (mg/m²)	% cover	<	<	<u></u>	<	<u>%</u>	<1/2 #	< m	<-3 ¥⊞	₽	<u>< 50th %ile</u>	<u>%</u> ∆
	Tidal Rangitikei (Rang_4b)	7 to 8.5	0.5	24	3	70	2	5	200	30	15 <u>0.015</u>	167 <u>0.167</u>	5 100	400 <u>0.400</u>	95	2.5		15	30	<u>2.5</u>	30
	Porewa (Rang_4c)	7 to 8.5	0.5	22	3	70	2	5	120	30	10 0.010	110 0.110	5 100	400 0.400	95		20		30	<u>1.6</u>	30
	Tutaenui (Rang_4d)	7 to 8.5	0.5	24	3	60	2	5	200	30	10 <u>0.010</u>	110 <u>0.110</u>	5 <u>100</u>	4 00 <u>0.400</u>	95			15	30	<u>2.5</u>	30
Upper Whanganui (Whai_1)	Upper Whanganui	7 to 8.2	0.5	19	2	80	1 <u>1.5</u>	2.5 5	50	30	6 <u>0.006</u>	70 <u>0.070</u>	6 <u>120</u>	320 <u>0.320</u>	99	2.5		5	20	<u>3</u>	20
	Cherry Grove (Whai_2a)	7 to 8.5	0.5	19	2	80	4 <u>1.5</u>	5	120	30	10 0.010	110 0.110	5 <u>100</u>	4 00 0.400	95	2.5		15	30	<u>2.5</u>	30
	Upper Whakapapa (Whai_2b)	7 to 8.2	0.5	19	2	80	4 <u>1.5</u>	2.5 5	50	30	6 0.006	70 0.070	6 120	320 0.320	99	2.5		5	20	<u>3</u>	20
	Lower Whakapapa (Whai_2c)	7 to 8.2	0.5	19	2	80	4 <u>1.5</u>	2.5 5	50	30	6 0.006	70 0.070	6 <u>120</u>	320 0.320	99	2.5		5	20	<u>3</u>	20
Cherry Grove (Whai_2)	Piopiotea (Whai_2d)	7 to 8.2	0.5	19	2	80	1 <u>1.5</u>	<u>2.5</u> 5	50	30	6 0.006	70 <u>0.070</u>	6 <u>120</u>	320 0.320	99	2.5		5	20	<u>3</u>	20
	Pungapunga (Whai_2e)	7 to 8.5	0.5	19	2	80	1 <u>1.5</u>	5	120	30	10 0.010	110 0.110	5 <u>100</u>	400 0.400	95	2.5		15	30	<u>2.5</u>	30
	Upper Ongarue (Whai_2f)	7 to 8.2	0.5	19	2	80	1 <u>1.5</u>	2.5 5	50	30	6 <u>0.006</u>	70 0.070	6 <u>120</u>	320 0.320	99	2.5		5	20	<u>3</u>	20
	Lower Ongarue (Whai_2g)	7 to 8.5	0.5	19	2	80	4 <u>1.5</u>	5	120	30	10 <u>0.010</u>	110 <u>0.110</u>	5 <u>100</u>	400 0.400	95	2.5		15	30	<u>2.5</u>	30
Te Maire (Whai_3)	Te Maire	7 to 8.5	0.5	19	2	80	1 <u>1.5</u>	5	120	30	10 0.010	110 0.110	5 100	4 00 0.400	95	2.5		15	30	<u>2.5</u>	30
	Middle Whanganui (Whai_4a)	7 to 8.5	0.5	19	2	80	4 <u>1.5</u>	5	120	30	10 0.010	110 0.110	5 100	4 00 0.400	95	2.5		15	30	<u>2.5</u>	30
Middle Whanganui	Upper Ohura (Whai_4b)	7 to 8.5	0.5	22	3	70	2	5	200	30	15 0.015	167 0.167	5 100	400 0.400	95		20		30	<u>1.6</u>	30
(Whai_4)	Lower Ohura (Whai_4c)	7 to 8.5	0.5	22	3	70	2	5	200	30	15 <u>0.015</u>	167 <u>0.167</u>	5 <u>100</u>	400 0.400	95		20		30	<u>1.6</u>	30
	Retaruke (Whai_4d)	7 to 8.5	0.5	19	2	80	4 <u>1.5</u>	5	120	30	10 0.010	110 0.110	5 100	400 0.400	95	2.5		15	30	<u>2.5</u>	30
Pipiriki (Whai_5)	Pipiriki (Whai_5a)	7 to 8.5	0.5	22	3	70	2	5	120	30	10 <u>0.010</u>	110 0.110	5 <u>100</u>	4 00 <u>0.400</u>	95	2.5	20		30	<u>2</u>	30

<u>Ta</u>	able D.2a: Water Quali	ity Standar	ds for	River	s and	Streams in	each Wate	r Manage	ement Sub-	<u>zone (No</u>	te: refer to	Table D.4a f	or the wat	ter quality stand	ards that	at apply	to natur	al lakes	<u>s):</u>		
Management	Sub-zone	рН		Tei (°		DO (%SAT)	<u>sc</u> BOD₅ (g/m³)	POM (g/m³)	Periph	yton	DRP (m g/m³)	SIN (m g/m³)	QMCI⁴	Ammonia <u>cal</u> <u>Nitrogen</u> (m g/m³)	Tox.	Ŧ	urbidity	' (NTU)		Clari (m	
Zone		Range	Δ	<	∆ ⁵	>	<	<	Chla Chl a (mg/m²)	% cover	<	<	_≧	<	<u>%</u>	<1/2 #	< m	ሩ ፡ አመ	<u>A</u>	<u>< 50th</u> <u>%ile</u>	<u>%</u> ∆
	Tangarakau (Whai_5b)	7 to 8.5	0.5	22	3	70	2	5	200	30	15 0.015	167 0.167	5 100	400 0.400	95		20		30	<u>1.6</u>	30
	Whangamomona (Whai_5c)	7 to 8.5	0.5	22	3	70	2	5	200	30	15 <u>0.015</u>	167 <u>0.167</u>	5 100	400 <u>0.400</u>	95		20		30	<u>1.6</u>	30
	Upper Manganui o te Ao (Whai_5d)	7 to 8.2	0.5	19	2	80	4 <u>1.5</u>	2.5 5	50	30	6 <u>0.006</u>	70 .070	6 <u>120</u>	320 0.320	99	0.6		3.5	20	<u>3.4</u>	20
	<u>Makatote</u> (Whai_5e)	<u>7 to 8.2</u>	<u>0.5</u>	<u>19</u>	<u>2</u>	<u>80</u>	<u>1.5</u>	<u>5</u>	<u>50</u>		<u>0.006</u>	<u>0.070</u>	<u>120</u>	<u>0.320</u>	<u>99</u>					<u>3.4</u>	<u>20</u>
	<u>Waimarino</u> (Whai_5f)	<u>7 to 8.2</u>	<u>0.5</u>	<u>19</u>	<u>2</u>	<u>80</u>	<u>1.5</u>	<u>5</u>	<u>50</u>		<u>0.006</u>	<u>0.070</u>	<u>120</u>	<u>0.320</u>	<u>99</u>					<u>3.4</u>	<u>20</u>
	<u>Middle Manganui o</u> <u>te Ao</u> (Whai <u>5g)</u>	<u>7 to 8.2</u>	<u>0.5</u>	<u>19</u>	<u>2</u>	<u>80</u>	<u>1.5</u>	<u>5</u>	<u>50</u>		<u>0.006</u>	<u>0.070</u>	<u>120</u>	<u>0.320</u>	<u>99</u>					<u>3.4</u>	<u>20</u>
	<u>Mangaturuturu</u> (Whai_5h)	<u>7 to 8.2</u>	<u>0.5</u>	<u>19</u>	<u>2</u>	<u>80</u>	<u>1.5</u>	<u>5</u>	<u>50</u>		<u>0.006</u>	<u>0.070</u>	<u>120</u>	<u>0.320</u>	<u>99</u>					<u>3.4</u>	<u>20</u>
	Lower Manganui o te Ao (Whai_5 ei)	7 to 8.5	0.5	19	2	80	4 <u>1.5</u>	2.5 5	120	30	10 <u>0.010</u>	110 <u>0.110</u>	6 <u>120</u>	320 <u>0.320</u>	99	0.6		3.5	20	<u>3.4</u>	20
	Orautoha (Whai_5j)	<u>7 to 8.5</u>	<u>0.5</u>	<u>19</u>	<u>2</u>	<u>80</u>	<u>1.5</u>	<u>5</u>	<u>120</u>		<u>0.010</u>	<u>0.110</u>	<u>120</u>	<u>0.320</u>	<u>99</u>					<u>3.4</u>	<u>20</u>
Paetawa (Whai_6)	Paetawa	7 to 8.5	0.5	22	3	70	2	5	120	30	10 0.010	110 0.110	5 100	400 0.400	95	2.5	20		30	<u>2</u>	30
	Lower Whanganui (Whai_7a)	7 to 8.5	0.5	22	3	70	2	5	200	30	15 <u>0.015</u>	167 <u>0.167</u>	5 100	400 <u>0.400</u>	95		20		30	<u>1.6</u>	30
Lower Whanganui	Coastal Whanganui (Whai_7b)	7 to 8.5	0.5	24	3	60	2	5	200	30	15 <u>0.015</u>	167 <u>0.167</u>	5 <u>100</u>	400 <u>0.400</u>	95		20		30	<u>1.6</u>	30
(Whai_7)	Upokongaro (Whai_7c)	7 to 8.5	0.5	22	3	70	2	5	200	30	15 0.015	167 0.167	5 100	400 0.400	95		20		30	<u>1.6</u>	30
	Matarawa (Whai_7d)	7 to 8.5	0.5	22	3	70	2	5	200	30	15 0.015	167 0.167	5 100	400 0.400	95		<u>20</u>		30	<u>1.6</u>	30
Upper Whangaehu	Upper Whangaehu (Whau_1a)	7 to 8.2 ^(a)	0.5	19	2	80	4 1.5	2.5 5	50	30	6 0.006	70 0.070	6 120	320 0.320	99			5 ^(a)	20	<u>3</u>	20
(Whau_1)	Waitangi (Whau_1b)	7 to 8.5	0.5	19	2	80	1 1.5	5	120	30	10 0.010	110 0.110	5 100	400 0.400	95	<u>2.5</u>		15	30	<u>2.5</u>	30

<u>1</u>	able D.2a: Water Quali	ity Standaı	rds for	River	s and	Streams in	each Wate	er Manage	ement Sub-	zone (No	te: refer to	Table D.4a f	or the wate	er quality stand	ards tha	at apply	to natu	al lakes	<u>s):</u>		
Management	Sub <u>-</u> zone	рН		Te (°	mp C)	DO (%SAT)	<u>sc</u> BOD₅ (g/m³)	POM (g/m³)	Periph	yton	DRP (m g/m³)	SIN (m g/m³)	<mark>Q</mark> MCI⁴	Ammonia <u>cal</u> <u>Nitrogen</u> (m g/m³)	Tox.	Ŧ	urbidity	' (NTU)		Clar (m	
Zone		Range	Δ	<	∆ ⁵	>	<	<	Chla Chl a (mg/m²)	% cover	<	<	<u>_</u>	<	<u>%</u>	<1/2 #	< m	८३ xm	₽	<u>< 50th %ile</u>	<u>%</u> ∆
	Tokiahuru (Whau_1c)	7 to 8.2	0.5	19	2	80	1 1.5	<u>2.5</u> 5	50	30	6 0.006	70 0.070	6 120	320 0.320	99	2.5		5	20	<u>3</u>	20
Middle Whangaehu (Whau_2)	Middle Whangaehu	7 to 8.5 ^(a)	0.5	22	3	70	2	5	200	30	15 0.015	167 <u>0.167</u>	5 100	400 0.400	95		20^(a)		30	<u>1.6</u>	30
	Lower Whangaehu (Whau_3a)	7 to 8.5 ^(a)	0.5	22	3	70	2	5	200	30	15 0.015	167 0.167	5 100	400 0.400	95		20^(a)		30	<u>2</u>	30
	Upper Makotuku (Whau_3b)	7 to 8.2	0.5	19	2	80	4 <u>1.5</u>	2.5 5	50	30	6 0.006	70 <u>0.070</u>	6 120	320 0.320	99	2.5		5	20	<u>3</u>	20
Lower Whangaehu	Lower Makotuku (Whau_3c)	7 to 8.2	0.5	19	2	80	1 <u>1.5</u>	2.5 5	50	30	6 <u>0.006</u>	70-<u>0.070</u>	6 120	320 0.320	99	2.5		5	20	<u>3</u>	20
(Whau_3)	Upper Mangawhero (Whau_3d)	7 to 8.2	0.5	19	2	80	1 <u>1.5</u>	2.5 5	50	30	6 <u>0.006</u>	70 <u>0.070</u>	6 <u>120</u>	320 0.320	99	2.5		5	20	<u>3</u>	20
	Lower Mangawhero (Whau_3e)	7 to 8.5	0.5	22	3	70	2	5	120	30	10 <u>0.010</u>	110 <u>0.110</u>	5 100	4 00 <u>0.400</u>	95	2.5	20		30	<u>2</u>	30
	<u>Makara</u> (Whau_3f)	<u>7 to 8.2</u>	<u>0.5</u>	<u>19</u>	<u>2</u>	<u>80</u>	<u>1.5</u>	<u>5</u>	<u>50</u>		<u>0.006</u>	<u>0.070</u>	6 120	<u>0.320</u>	<u>99</u>					<u>3</u>	<u>20</u>
Coastal Whangaehu (Whau_4)	Coastal Whangaehu	7 to 8.5 ^(a)	0.5	22	3	70	2	5	200	30	15 <u>0.015</u>	167 <u>0.167</u>	5 <u>100</u>	4 00 0.400	95		20^(a)		30	<u>1.6</u>	30
	Upper Turakina (Tura_1a)	7 to 8.5	0.5	22	3	70	2	5	200	30	15 <u>0.015</u>	167 <u>0.167</u>	5 100	4 00 <u>0.400</u>	95		20		30	<u>1.6</u>	30
Turakina (Tura_1)	Lower Turakina (Tura_1b)	7 to 8.5	0.5	22	3	70	2	5	200	30	15 <u>0.015</u>	167 <u>0.167</u>	5 100	4 00 <u>0.400</u>	95		20		30	<u>1.6</u>	30
(1014_1)	Ratana (Tura_1c)	7 to 8.5	0.5	24	3	60	2	5	200	30	15 <u>0.015</u>	167 0.167	5 100	4 00 <u>0.400</u>	95			15	30	<u>2.5</u>	30
Ohau	Upper Ohau (Ohau_1a)	7 to 8.2	0.5	19	2	80	4 <u>1.5</u>	2.5 5	50	30	6 0.006	70-<u>0.070</u>	6 <u>120</u>	320 0.320	99	<u>2.5</u>		5	20	<u>3</u>	20
(Ohau_1)	Lower Ohau (Ohau_ <u>1</u> b a)	7 to 8.5	0.5	22	3	70	2	5	120	30	10 0.010	110 <u>0.110</u>	5 100	400 0.400	95	2.5		15	30	<u>2.5</u>	30
Owahanga (Owha_1)	Owahanga	7 to 8.5	0.5	22	3	70	2	5	200	30	15 0.015	167 0.167	5 100	400 0.400	95		20		30	<u>1.6</u>	30
East Coast (East_1)	East Coast	7 to 8.5	0.5	22	3	70	2	5	200	30	15 0.015	167 0.167	5 100	400 0.400	95		20		30	<u>1.6</u>	30

<u>T</u>	able D.2a: Water Qual	ity Standar	ds for	River	s and	Streams ir	each Wate	er Manage	ement Sub-	zone (No	te: refer to	Table D.4a f	or the wat	er quality stand	ards tha	at apply t	to natui	ral lakes	<u>s):</u>		
Management	Sub-zone	рН			mp C)	DO (%SAT)	<u>sc</u> BOD₅ (g/m³)	POM (g/m³)	Periph	yton	DRP (m g/m³)	SIN (m g/m³)	QMCI⁴	Ammonia <u>cal</u> <u>Nitrogen</u> (m g/m³)	Tox.	Ŧ	urbidity	(NTU)		Clari (m)	
Zone	,	Range	Δ	<	∆ ⁵	>	<	<	Chla Chl a (mg/m²)	% cover	<	<	<u>_</u>	<	<u>%</u>	< <u>1/2</u> m	< m	≺3 xm	A	<u>< 50th %ile</u>	<u>%</u> ∆
	Upper Akitio (Akit_1a)	7 to 8.5	0.5	22	3	70	2	5	200	30	15 0.015	167 0.167	5 100	400 <u>0.400</u>	95		20		30	<u>1.6</u>	30
Akitio (Akit_1)	Lower Akitio (Akit_1b)	7 to 8.5	0.5	22	3	70	2	5	200	30	15 <u>0.015</u>	167 <u>0.167</u>	5 100	4 00 <u>0.400</u>	95		20		30	<u>1.6</u>	30
	Waihi (Akit_1c)	7 to 8.5	0.5	22	3	70	2	5	200	30	15 <u>0.015</u>	167 <u>0.167</u>	5 <u>100</u>	4 00 <u>0.400</u>	95		20		30	<u>1.6</u>	30
Northern Coastal (West_1)	Northern Coastal	7 to 8.5	0.5	24	3	60	2	5	200	30	15 0.015	167 <u>0.167</u>	5 <u>100</u>	4 00 <u>0.400</u>	95			15	30	<u>2.5</u>	30
Kai lwi (West_2)	Kai lwi	7 to 8.5	0.5	22	3	70	2	5	200	30	15 0.015	167 0.167	5 100	4 00 0.400	95		20		30	<u>1.6</u>	30
Mowhanau (West_3)	Mowhanau	7 to 8.5	0.5	24	3	60	2	5	200	30	15 0.015	167 <u>0.167</u>	5 100	4 00 <u>0.400</u>	95			15	30	<u>2.5</u>	30
Kaitoke Lakes (West_4)	Kaitoke Lakes	7 to 8.5	0.5	24	3	60	2	5	200	30	15 0.015	167 <u>0.167</u>	5 100	4 00 <u>0.400</u>	95			15	30	<u>2.5</u>	30
Southern W <u>h</u> anganui Lakes (West_5)	Southern W <u>h</u> anganui Lakes	7 to 8.5	0.5	24	3	60	2	5	200	30	15 <u>0.015</u>	167 <u>0.167</u>	5 <u>100</u>	400 <u>0.400</u>	95			15	30	<u>2.5</u>	30
Northern Manawatu Lakes (West_6)	Northern Manawatu Lakes	7 to 8.5	0.5	24	3	60	2	5	200	30	15 <u>0.015</u>	167 <u>0.167</u>	5 100	4 00 <u>0.400</u>	95			15	30	<u>2.5</u>	30
Waitarere (West_7)	Waitarere	7 to 8.5	0.5	24	3	60	2	5	200	30	15 0.015	167 0.167	5 <u>100</u>	4 00 0.400	95			15	30	<u>2.5</u>	30
Lake Papaitonga (West_8)	Lake Papaitonga	7 to 8.5	0.5	24	3	60	2	5	200	30	15 0.015	167 0.167	5 100	400 0.400	95			15	30	<u>2.5</u>	30
Waikawa	Waikawa <u>(West_9a)</u>	7 to 8.5	0.5	22	3	70	2	5	120	30	10 0.010	167 0.167	5 100	400 0.400	95			15	30	<u>2.5</u>	30
(West_9)	Manakau (West_9b)	<u>7 to 8.5</u>	<u>0.5</u>	<u>22</u>	<u>3</u>	<u>70</u>	<u>2</u>	<u>5</u>	<u>120</u>		<u>0.010</u>	<u>0.167</u>	<u>100</u>	0.400	<u>95</u>					<u>2.5</u>	<u>30</u>
Lake Horowhenua	Lake Horowhenua (Hoki_1a)	7 to 8.5	0.5	24	3	60	2	5	200	30	15 <u>0.015</u>	167 0.167	5 100	<u>0.400</u>	95			15	30	<u>2.5</u>	30
(Hoki_1)	Hokio (Hoki_1b)	7 to 8.5	0.5	24	3	60	2	5	200	30	15 0.015	167 0.167	5 100	4 00 <u>0.400</u>	95			15	30	<u>2.5</u>	30

Schedule D Standards Trout Spawning

Additional water quality standards applying to the streams and rivers classified as Trout Spawning. The following standards apply to all streams where the TS (Trout Spawning) value is identified, from 1st May to 30 September inclusive.

- 1. The temperature of the water shall not be changed by more than 2°C, and
- 2. The temperature of the water shall not exceed 11 °C, and
- 3. The dissolved oxygen concentration shall not be less than 80% saturation, and
- 4. There shall be no measurable increase in sediment or particulate organic matter deposited on the bed of the river or stream, and
- 5. The concentration of toxicants in the water shall not exceed the trigger values defined in the 2000 ANZECC guidelines Table 3.4.1 with the level of protection of 99 % of species.

Table D:3a Additional Water^A Quality Standards that apply to all streams and rivers^A identified as being managed for the Trout Spawning (TS) value between 1 May and 30 September:⁶

Management Zone	Sub-Zone	<u>Te</u> (°	emp (C)	<u>DO*</u> (%SAT)	Sediment or POM	Toxicants (%)
		<u><</u>	Δ	<u>></u>		
<u>All Water</u> <u>Management</u> <u>Zones* classified</u> <u>as being managed</u> <u>for Trout Spawning</u>	All Water Management Sub- Zones classified as being managed for Trout Spawning (See Table Ba 19)	<u>11</u>	<u>2</u>	<u>80</u>	No measurable increase of deposited sediment or particulate organic matter (POM) on the <i>bed^</i> of the <i>river^</i> or stream	<u>99</u>

⁶ This is not new information, just the Additional Water Quality Standards applying to stream and rivers classified as Trout Spawning put in table format for consistency

Schedule D Standards Natural Lakes^

Water quality standards for natural lakes and lake catchments

This part defines :

- water management subzones where water quality standards for lakes and lake catchments are defined (Table D.18); and
- water quality standard for natural lake waters, and
- water quality standard for streams and rivers that flow into lakes (Table D.19 and Table D.20)

The following zones contain natural lakes:

Table D 18.	Nater Management Sub-zones where lake water and lake catchment water quality standards an	nlv
Tuble D.IO.	water management oub zones where lake water and lake outerment water quality standards ap	ਦਾਸ

West_1	Tura_1c	Mana_13a
Whai_7b	West_5	Hoki_1a
West_4	West_6	West_8
Whau_4	West_7	

Lowland lakes water quality standards. These standards apply year round to waters of all natural lakes within the water management subzones defined in Table D18.

- 1. The pH of the water shall be within the range 7 to 8.5 and shall not be changed by more than 0.5 pH;
- 2. The temperature of the water shall not be changed by more than 1 °C;
- 3. The Dissolved Oxygen concentration shall not be less than 80% in the surface waters (defined as less than 2 metres deep);
- 4. The five-days Biological oxygen demand shall not exceed 1 g/m³.
- 5. The annual average algal biomass shall not exceed 5 mg Chlorophyll a/m³ and no sample shall exceed 15 mg Chlorophyll a/m³;
- 6. The annual average total phosphorus concentration shall not exceed 20 mg/m³;
- 7. The annual average total nitrogen concentration shall not exceed 337 mg/m³;
- 8. The concentration of ammoniacal Nitrogen shall not exceed 337 mg/m³;
- 9. For toxicants not otherwise defined in these standards, the concentration of toxicants in the water shall not exceed the trigger values defined in the 2000 ANZECC guidelines Table 3.4.1 with the level of protection of 95 % of species;
- 10. The clarity of the water measured as Secchi depth shall not be less than 2.8m and shall not be changed by more than 20%;
- 11. The turbidity shall not be changed by more than 20%. This standard shall apply only when physical conditions existing at the site prevent adequate water clarity (Secchi Disc) measurement.
- 12. The concentration of Escherichia coli shall not exceed 260 per 100 millilitres. This standard applies during the period 1st November to 30th April inclusive, and
- 13. The concentration of Escherichia coli shall not exceed 550 per 100 millilitres. This standard applies during the period 1st May to 31th October inclusive year round.
- 14. The concentration of toxins due to cyanobacteria (blue-green algae) shall not exceed 20 milligrams per cubic metre. This standard applies year round

Table D.19: The water quality standards defined in Table D.20 shall be read as follows (the numerical values in Table D.20 are indicated by [...])

Column		Standard spolt out
header	sub- header	
рH	Range	The pH of the water shall be within the range [] to []
рп	A	The pH of the water shall not be changed by more than
Temp	4	The temperature of the water shall not exceed [] degrees Celsius.
(°C)	A	The temperature of the water shall not be changed by more than [] degrees Celsius.
DO (%SAT)	<	The concentration of dissolved oxygen shall exceed [] % of saturation
BOD ₅ (g/m ³)	۲.	The five-days biological oxygen demand shall not exceed [] grams per cubic metre.
POM (g/m ³)	۲.	The concentration of particulate organic matter shall not exceed [] grams per cubic metre.
Dorinhutan	Chla (mg/m²)	The algal biomass on the stream or river bed shall not exceed [] milligrams of chlorophyll a per square metre.
Periphyton	% cover	The maximum cover of visible stream or river bed by periphyton (as filamentous algae more than 2 centimetres long) shall not exceed []% between 1 st November to 30 th April inclusive.
TP (mg/m ³)	4	The mean monthly concentration of total phosphorus shall not exceed [] milligrams per cubic metre, unless natural levels already exceed this standard.
TN (mg/m ³)	4	The mean monthly concentration of total nitrogen shall not exceed [] milligrams per cubic metre.
Ammonia (mg/m ³)	4	The concentration of ammonia nitrogen reactive phosphorus shall not exceed [] milligrams per cubic metre.
Toxicants	۲.	For toxicants not otherwise defined in these standards, the concentration of toxicants in the water shall not exceed the trigger values defined in the 2000 ANZECC guidelines Table 3.4.1 with the level of protection of [] % of species.
	< ½ m	The turbidity of the water when the river flow is at or below half median flow shall not exceed [] Nephlometric Turbidity Units (NTU)
Turbidity	≤m	The turbidity of the water when the river flow is at or below median flow shall not exceed []Nephlometric Turbidity Units (NTU)
(NTU)	<3 x m	The turbidity of the water when the river flow is at or below three times median flow shall not exceed []Nephlometric Turbidity Units (NTU)
	<u>A</u>	The turbidity of the water shall not be changed by more than [] %
Clarity (m)	A	The clarity of the water measured as being the horizontal sighting range of a 200 mm black disc shall not be changed by more than [] %

Notes:

a. The pH change standard applies only within the bounds of the pH range standard
b. The temperature change standard applies only within the bounds of the temperature standard.

-Soluble Inorganic Nitrogen (SIN) concentration is measured of the sum of nitrate nitrogen, nitrite nitrogen and ammonia nitrogen c.

Management Zone	Management	pH	H Temp DO (°C) (%SAT)		BOD ₅ (g/m³)					Ammonia (mg/m³)			Turbidity (NTU)						
Management Zone	Sub-zone	Range	<u>A</u>	4	4	4	4	4	Chla (mg/m ²)	% cover	4	4	4	TOXICAILLE	<1/2 m	≺ #1	<-3 xm	A	₽
Coastal Manawatu Mana_13	Coastal Manawatu Mana_13a	7 to 8.5	0.5	2 4	3	70	2	5	200	30	20	337	337	95	2.5		15	30	30
Lower Whanganui Whai_7	Coastal Whanganui Whai_7b	7 to 8.5	0.5	2 4	3	60	2	5	200	30	20	337	337	95		20		30	30
Coastal Whangaehu Whau_4	Coastal Whangaehu Whau_ 4	7 to 8.5	0.5	<u>22</u>	3	70	2	5	200	30	20	337	337	95		20		30	30
Turakina Tura_1	Ratana Tura_1c	7 to 8.5	0.5	2 4	3	60	2	5	200	30	20	337	337	95			15	30	30
Northern Coastal West_1	Northern Coastal West_1	7 to 8.5	0.5	2 4	3	60	2	5	200	30	20	337	337	95			15	30	30
Kaitoke Lakes West_4	Kaitoke Lakes West_4	7 to 8.5	0.5	24	3	60	2	5	200	30	20	337	337	95			15	30	30
Southern Wanganui Lakes Wost_5	Southern Wanganui Lakes West_5	7 to 8.5	0.5	24	3	60	2	5	200	30	20	337	337	95			15	30	30
Northern Manawatu Lakos West_6	Northern Manawatu Lakes West_6	7 to 8.5	0.5	2 4	3	60	2	5	200	30	20	337	337	95			15	30	30
Waitarere West_7	Waitarere West_7	7 to 8.5	0.5	2 4	3	60	2	5	200	30	20	337	337	95			15	30	30
Lake Papaitonga West_8	Lake Papaitonga West_8	7 to 8.5	0.5	24	3	60	2	5	200	30	20	337	337	95			15	30	30
Lake Horowhenua Hoki_1	Lake Horowhenua Hoki_1a	7 to 8.5	0.5	2 4	3	60	2	5	200	30	20	337	337	95			15	30	30

Table D.20: The following water quality standards apply to streams and rivers in natural lakes catchments (ie., flowing directly or indirectly into a natural lake)

Note these water management subzones also contain streams and river that do not flow into a natural lake. For these waters, standards in Table D.17 apply

Table	D:4a Lake [^] Wa	ater^ Quality	standards app	oly year-round	d to the <i>water</i>	s^ of natural	lakes^ as defined i	n Table E.1 ar	nd not exclud	ed by way of	f Table E.2(b) c	lauses iv to ix)	<u>.</u>
Lake Type	рН	<u>Temp</u> (°C)	<u>Algal Biomass</u> <u>Chl a (mg/m³)</u>		<u>TP</u> (g/m³)	<u>TN</u> g/m³	Ammoniacal <u>Nitrogen</u> (g/m³)	<u>Toxicity</u>	<u>Clarity</u>	<u>/ (m)⁷</u>	<u>Euphotic</u> <u>Depth</u>	<u>E.col</u>	i / 100 ml
	<u>Range</u>	<u><</u>	<u><</u>	<u>Max.</u>	<u> </u>	<u><</u>	<u><</u> 8	<u>%</u>	<u>></u>	<u>%</u>	<u>%A</u>	<u>Summer</u> (1 Nov – 30 Apr)	<u>Winter</u> (1 May – 31 Oct)
Deep lakes ⁹	<u>6.5 – 8.5</u>	<u>24</u>	<u>5</u>	<u>15</u>	0.020	0.337	0.400	<u>95</u>	2.8	<u>20</u>	<u>10</u>	260	550
Shallow lakes ¹⁰	<u>6.5 – 8.5</u>	<u>24</u>	<u>12</u>	<u>30</u>	<u>0.043</u>	<u>0.735</u>	<u>0.400</u>	<u>95</u>	<u>0.8</u>	<u>20</u>	<u>10</u>	<u>260</u>	<u>550</u>

Water quality standards for the marine coastal waters. The following standards apply year round to the waters within the coastal Marine area.

- 1. The pH of the water shall be within the range 8 to 8.3 and shall not be changed by more than 0.1 pH;
- 2. The temperature of the water shall not be changed by more than 1 °C;
- 3. The Dissolved Oxygen concentration shall not be less than 90 % in the surface waters defined as less than 2 metres deep;
- 4. The average annual algal biomass shall not exceed 1 mg Chlorophyll a/m³;
- 5. The average annual total phosphorus concentration shall not exceed 10 mg/m³;
- 6. The average annual total nitrogen concentration shall not exceed 60 mg/m³;
- 7. The concentration of ammonia nitrogen shall not exceed 60 mg/m³;
- 8. For toxicants not otherwise defined in these standards, the concentration of toxicants in the water shall not exceed the trigger values defined in the 2000 ANZECC guidelines Table 3.4.1 with the level of protection of 99 % of species;
- 9. The clarity of the water measured as Secchi depth shall not be changed by more than 20%;
- 10. The turbidity shall not be changed by more than 20%. This standard shall apply only when physical conditions existing at the site prevent adequate water clarity (Secchi Disc) measurement.
- 11. The concentration of *Enterococci* shall not exceed 140 per 100 millilitres. This standard applies during the period 1st November to 30th April inclusive, and
- 12. The concentration of Enterococci shall not exceed 280 per 100 millilitres. This standard applies during the period 1st May to 31th October inclusive.
- 13. The median concentration of faecal coliforms shall not exceed 14 per 100 millilitres and the 90th percentile shall not exceed 43 per 100 millilitres. This standard applies year round.
- 14. The concentration of toxins due to cyanobacteria (blue-green algae) shall not exceed 20 milligrams per cubic metre. This standard applies year round.

⁷ The horizontal black disc sighting method is not directly equivalent to Secchi depth measurement; horizontal black disc is approximately 25% lower in magnitude than Secchi depth and results should be adjusted accordingly

⁸ Standard only applies when lake pH exceeds 8.5 within the epilimnion (shallow lakes) or within 2m of the water surface (deep lakes)

⁹ A deep lake is defined as a lake that undergoes stable thermal stratification in summer.

¹⁰ A shallow lake is defined as a lake that does not undergo stable thermal stratification in summer

Schedule D Standards Key

<u>Water^</u> Quality Standards Key: definition of abbreviations and full wording of the standards (placement of the numerical values for a specified standard are indicated by [...]).

Table D.16: The Water quality standards defined in Table 2 shall be read as follows (The numerical values in are indicated by [...])

Column Abbreviations use Header	ed in Tables D:1 to D:4 Sub-header	Standard spelt out Full Wording of the Standard
рН	Range Δ	The pH of the <i>water</i> ^A shall be within the range [] to []. The pH of the <i>water</i> ^A shall not be changed by more than [].
Temp (°C)	< Δ	The temperature of the <i>water</i> ^A shall not exceed [] degrees Celsius. The temperature of the <i>water</i> ^A shall not be changed by more than []degrees Celsius.
DO (% SAT)	<u> </u>	The concentration of dissolved oxygen (DO) shall exceed [] % of saturation.
<u>sC</u> BOD₅ (g/m³)	<	The monthly average five-days filtered / soluble carbonaceous biologicalchemical oxygen demand (BOD) when the river^ flow is at or below 20th percentile of flow shall not exceed [] grams per cubic metre.
POM (g/m ³)	<	The concentration of particulate organic matter when the river ^A flow is at or below 50th percentile of flow shall not exceed [] grams per cubic metre.
Periphyton	Chla Chl a (mg/m²)	The algal biomass on the stream or <i>river^ bed</i> ^ shall not exceed [] milligrams of chlorophyll <u>a</u> per square metre.
(rivers [^])	% cover	The maximum cover of visible stream or <i>river</i> ^A bed ^A by periphyton (as filamentous algae more than 2 centimetres long) shall not exceed [] %. <u>The maximum cover of visible stream or river bed by periphyton as diatoms or cyanobacteria more than 0.3 centimetres thick shall not exceed [] %.</u>
<u>Algal biomass</u> Chl <i>a</i> (mg/m³)	<u><</u>	The annual average algal biomass shall not exceed [] milligrams chlorophyll a per cubic metre.
<u>(lakes^)</u>	Maximum	no sample shall exceed [] milligrams chlorophyll a per cubic metre.
DRP (m g/m ³)	<	The annual average concentration of dissolved reactive phosphorus (DRP) when the <i>river</i> ^A flow is at or below-three times the median-the 20th percentile of flow shall not exceed [] milligrams per cubic metre, unless natural levels already exceed this standard.
<u>TP_(g/m³)</u> <u>(lakes^)</u>	<u> </u>	The annual average concentration of total phosphorus (TP) shall not exceed [] milligrams per cubic metre.
SIN (m g/m ³)	<	The annual average concentration of soluble inorganic nitrogen ¹¹ (SIN) when the <i>river</i> ^A flow is at or below three times the median-20th percentile of flow shall not exceed [] milligrams per cubic metre, unless natural levels already exceed this standard.
<u>TN (g/m³)</u> <u>(lakes^)</u>	<u><</u>	The annual average concentration of total nitrogen shall not exceed [] milligrams per cubic metre.
QMCI		The quantitative Macroinvertebrate CommunityIndex (MCI) shall exceed [], unless natural physical conditions are beyond the scope of application of the QMCI. In cases where the river^ or stream habitat is suitable for the application of the soft-bottomed variant of the MCI (sb-MCI) the standards shall also apply.
<u>QMCI</u>	<u>% </u>	No more than a 20 % reduction in Quantitative Macroinvertebrate CommunityIndex (QMCI) score between upstream and downstream of discharges to water^.
Ammonia <u>cal nitrogen</u> (m g/m ³) (<i>rivers</i> ^)	<	The concentration of ammonia <u>cal</u> nitrogen shall not exceed […] milli grams per cubic metre.
<u>Ammoniacal nitrogen</u> (g/m ³) (lakes^)	<u> </u>	The concentration of ammoniacal nitrogen shall not exceed [] grams per cubic metre when lake^ pH exceeds 8.5 within the epilimnion (shallow lakes^) or within 2 m of the water^ surface (deep lakes^).
Toxicants	< <u>%</u>	For toxicants not otherwise defined in these standards, the concentration of toxicants in the water ^A shall not exceed the trigger values defined in the 2000 ANZECC guidelines Table 3.4.1 for the level of protection of [] % of species.
	<u>< 1⁄₂ m</u>	The turbidity of the water when the river flow is at or below half median flow shall not exceed [] Nephlometric Turbidity Units (NTU)
Turbidity	<m< del=""></m<>	The turbidity of the water when the river flow is at or below median flow shall not exceed [] Nephlometric Turbidity Units (NTU)
(NTU) (Rivers)	<u><3 х m</u> <u>%</u> Д	The turbidity of the water when the river flow is at or below three times median flow shall not exceed [] Nephlometric Turbidity Units (NTU) The turbidity of the water shall not be changed by more than [] %. This standard shall apply only when physical conditions existing at the site prevent adequate water clarity (back Disc) measurement.
	% Δ	The clarity of the water ^A measured as being the horizontal sighting range of a 200 mm black disc shall not be changed reduced by more than [] %.
Clarity (m) <u>(<i>rivers</i>^</u>)	<u></u>	The clarity of the water ^A measured as being the horizontal sighting range of a 200 mm black disc shall equal or exceed [] m when the river ^A is at or below the 50 th percentile of flow.
<u>Clarity (m)</u>	<u>% </u>	The clarity of the water ^A measured as Secchi depth (or horizontal sighting range of a 200 mm black disc ¹²) shall not be reduced by more than [] %.
(lakes^)	<u> </u>	The clarity of the <i>water</i> ^A measured Secchi depth (or horizontal sighting range of a 200 mm black disc ¹²) shall exceed [] m.
<u>E.coli / 100 ml</u> (rivers^)	<u>< m</u>	The concentration of <i>Escherichia coli</i> shall not exceed [] per 100 millilitres from 1 November – 30 April (inclusive) when the <i>river</i> ^A flow is at or below the 50 th percentile of flow.
<i>E.coli /</i> 100 ml	<u><20th %ile</u> Summer	The concentration of <i>Escherichia coli</i> shall not exceed [] per 100 millilitres when the <i>river</i> [^] flow is at or below the 20 th percentile of flow year round. The concentration of <i>Escherichia coli</i> shall not exceed [] per 100 millilitres from 1 November – 30 April (inclusive).
<u>(lakes^)</u>	Winter	The concentration of Escherichia coli shall not exceed [] per 100 millilitres from 1 May – 31 October (inclusive).
Euphotic Depth		Euphotic depth shall not be reduced by more than [] %.

Soluble inorganic nitrogen (SIN) concentration is measured as the sum of nitrate nitrogen, nitrite nitrogen and ammoniacal nitrogen or the sum of total oxidised nitrogen and ammoniacal nitrogen.
The horizontal black disc sighting method is not directly equivalent to Secchi depth measurement, horizontal black disc is approximately 25% lower in magnitude than Secchi depth and results should be adjusted accordingly.